terclim by ICS banner
IVES 9 IVES Conference Series 9 INFLUENCE OF CHITOSAN, ABSCISIC ACID AND BENZOTHIADIAZOLE TREATMENTS ON SAVVATIANO (VITIS VINIFERA L.) WINES VOLATILE COMPOSITION PROFILE

INFLUENCE OF CHITOSAN, ABSCISIC ACID AND BENZOTHIADIAZOLE TREATMENTS ON SAVVATIANO (VITIS VINIFERA L.) WINES VOLATILE COMPOSITION PROFILE

Abstract

In the last decades the use of bioestimulants in viticulture have been promoted as alternative to conven- tional pesticides. Moreover, as bioestimulants promote the biosynthesis of secondary metabolites in grape berries, several studies had investigated their influence on the accumulation of phenolic com- pounds (Monteiro et al., 2022). However, few studies, so far, are focused on the accumulation of the vo- latile compounds and their impact on the produced wines (Giménez-Bañón et al., 2022; Gomez- Plaza et al., 2012; Ruiz Garcia et al., 2014).
This study was conducted in a single vineyard of white autochthonous grapevine variety Savvatia- no (Vitis vinifera L.) in Muses Valley (Askri, Viotia, Greece). Chitosan (CHT), Abscisic Acid (ABA) and Benzothiadiazole (BTH) were applied. The applications were performed at veraison stage, in a rando- mized complete block and grapes were harvested at their optimum technological maturity level. White wines vinification procedures were carried out (Miliordos et al., 2022) physiochemical parameters of must and wine, and wine aroma compounds were examined. Volatile compounds were analyzed using a gas chromatography coupled to a mass spectrophotometric detector (Miliordos et al. 2022). Results were statistically evaluated by analysis of variance (ANOVA at the p ≤ 0.05 level) and principal component analysis (PCA). CHT treatment increased total terpenes, esters and monoterpenes concentration which may enhance the desirable aromas for Savvatiano wines. Moreover, ABA enhanced the concentration of total esters, while kept in lower levels higher alcohols than control wines related to unpleasant aromas. On the other hand, BTH kept in low levels monoterpenes and acetates, as well as concentration of acids (hexanoic acid, isobutyric, butyric, isovaleric) and alcohols were still in low levels compared to control wines and the CHT and ABA treated. Furthermore, these differences in the volatile compound levels could sensorially detected, by the sensory panel.
The application of biostimulants recorded promising results to enhance aroma profile of the produced white wines. More research on different Greek cultivars in different terroirs is needed in order to en- hance our knowledge regarding the effect of biostimulants on grape and wine quality. Funding : This research was co-funded by the European Regional Development Fund of theEuropean Union and Greek national funds through the Operational Program ompetitiveness,Entrepreneurship and Innovation, under the call RESEARCH–CREATE–INNOVATE (project code: T1EDK- 04200 (MU-SA).

 

1. Giménez-Bañón, María José, Juan Daniel Moreno-Olivares, Diego Fernando Paladines-Quezada, Juan Antonio Bleda-Sán-chez, José Ignacio Fernández-Fernández, Belén Parra-Torrejón, José Manuel Delgado-López, and Rocío Gil-Muñoz. 2022. “Effects of Methyl Jasmonate and Nano-Methyl Jasmonate Treatments on Monastrell Wine Volatile Composition.” Molecules 27 (9): 2878. https://doi.org/10.3390/molecules27092878
2. Gómez-Plaza, Encarna, Laura Mestre-Ortuño, Yolanda Ruiz-García, Jose Ignacio Fernández-Fernández, and Jose María Ló-pez-Roca. 2012. “Effect of Benzothiadiazole and Methyl Jasmonate on the Volatile Compound Composition of Vitis Vinife-ra L. Monastrell Grapes and Wines.” American Journal of Enology and Viticulture 63 (3): 394–401. https://doi.org/10.5344/ajev.2012.12011
3. Miliordos, Dimitrios Evangelos, Alexandros Kanapitsas, Despina Lola, Elli Goulioti, Nikolaos Kontoudakis, Georgios Leventis, Myrto Tsiknia, and Yorgos Kotseridis. 2022. “Effect of Nitrogen Fertilization on Savvatiano (Vitis Vinifera L.) Grape and Wine Composition.” Beverages 8 (2): 29. https://doi.org/10.3390/beverages8020029.
4. Monteiro, Eliana, Berta Gonçalves, Isabel Cortez, and Isaura Castro. 2022. “The Role of Biostimulants as Alleviators of Biotic and Abiotic Stresses in Grapevine: A Review.” Plants 11 (3): 396. https://doi.org/10.3390/plants11030396.
5. Ruiz-Garcia, Y., J. M. Lopez-Roca, A. B. Bautista-Ortin, R. Gil-Munoz, and E. Gomez-Plaza. 2014. “Effect of Combined Use of Benzothiadiazole and Methyl Jasmonate on Volatile Compounds of Monastrell Wine.” American Journal of Enology and Viticulture 65 (2): 238–43. https://doi.org/10.5344/ajev.2014.13119 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Miliordos Dimitrios Evangelos¹, Elli Gouliti¹, Kontoudakis Nikolaos1,2, Kotseridis Yorgos¹

1. Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Oenology and Alcoholic Beverage Drinks, 75 Iera Odos, 11855 Athens, Greece
2. Department of Agricultural Biotechnology and Oenology, International Hellenic University, 1st km Drama-Mikrochori, 66100 Drama, Greece

Contact the author*

Keywords

Savvatiano, Biostimulants, Volatile compounds, Aroma

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

PROTEOMIC STUDY OF THE USE OF MANNOPROTEINS BY OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION

Malolactic fermentation (MLF) is a desired process to decrease acidity in wine. This fermentation, carried out mostly by Oenococcus oeni, is sometimes challenging due to the wine stress factors affecting this lactic acid bacterium. Wine is a harsh environment for microbial survival due to the presence of ethanol and the low pH, and with limited nutrients that compromise O. oeni development. This may result in slow or stuck fermentations. After the alcoholic fermentation the nutrients that remain in the medium, mainly released by yeast, can be used in a beneficial way by O. oeni during MLF.

THE POTENTIAL USE OF SOLUBLE POLYSACCHARIDES TO PREVENT THE OXIDATION OF ROSÉ WINES

Lately, rosé wine is rapidly increasing its popularity worldwide. Short-time macerations with the red skin of the grapes cause the partial extraction of anthocyanins, which are responsible for the pinki-sh-salmon hue of rosé wines. However, the low quantity of tannins (antioxidants) and richness in phenolic acids, which can be easily oxidized into yellowish pigments, tend to predispose rosé wines to an undesirable browning. Although the use of SO₂ for the prevention of oxidation is highly extended, this practice is expected to be reduced. Therefore, the search for alternative oenological adjuvants that prevent the oxidation and browning of rosé wines is highly desired.

CHANGES IN CU FRACTIONS AND RIBOFLAVIN IN WHITE WINES DURING SHORT-TERM LIGHT EXPOSURE: IMPACTS OF OXYGEN AND BOTTLE COLOUR

Copper in white wine can be associated with Cu(II) organic acids (Cu fraction I), Cu(I) thiol species (Cu fraction II), and Cu sulfides (Cu fraction III). The first two fractions are associated with the repression of reductive aromas in white wine, but these fractions gradually decrease in concentration during the normal bottle aging of wine. Although exposure of white wine to fluorescent light is known to induce the accumulation of volatile sulfur compounds, causing light-struck aroma, the influence on the loss of protective Cu fractions is uncertain. Riboflavin is known to be a critical initiator of photochemical reac-tions in wine, but the rate of its decay under short-term light exposure in different coloured bottles and for wine of different oxygen concentrations is not well understood.

INFLUENCE OF GRAPE RIPENESS ON MACROMOLECULES EXTRACTABILITY FROM GRAPE SKIN TISSUES AND GRAPE SEEDS DURING WINEMAKING

A consequence of climate change is the modification of grape harvest quality and physico-chemical parameters of the obtained wine: increase in alcoholic degree, decrease in pH, and modification of the extractability of macromolecules, which leads to problems of microbiological, tartaric, colour and colloidal stability. In order to respond to these problems, the winemaking processes must be anticipated and adapted with a better knowledge of macromolecule extractability in grapes and their evolution, according to the grape variety, vintage and winemaking process. The purpose of this study was to understand 1) how the harvest date can influence the extractability of macromolecules, polysaccharides and phenolic compounds, which are responsible for wine stability 2) how to adapt the winemaking process to the harvest date in order to optimise wine quality.

DEVELOPMENT OF DISTILLATION SENSORS FOR SPIRIT BEVERAGES PRODUCTION MONITORING BASED ON IMPEDANCE SPECTROSCOPY MEASUREMENT AND PARTIAL LEAST SQUARES REGRESSION (PLS-R)

During spirit beverages production, the distillate is divided in three parts: the head, the heart, and the tail. Acetaldehyde and ethanol are two key markers which allow the correct separation of distillate. Being toxic, the elimination of the head part, which contains high concentration of acetaldehyde, is crucial to guarantee the consumer’s health and security. Plus, the tail should be separated from the heart based on ethanol concentration.