terclim by ICS banner
IVES 9 IVES Conference Series 9 WINE LEES AS A SOURCE OF NITROGEN FOR OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION PERFORMANCE

WINE LEES AS A SOURCE OF NITROGEN FOR OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION PERFORMANCE

Abstract

Malolactic fermentation (MLF) is a desired process in red and acidic white wines, after alcoholic fermentation (AF), carried out by the lactic acid bacterium (LAB) Oenococcus oeni. The advantages are an increase of pH, microbiological stabilization and organoleptic improvement of the final wine. However, the presence of stress factors such as ethanol, low pH, high total SO2, lack of nutrients and presence of inhibitors, could affect the successful completion of MLF [1]. Changes in amino acid composition and deficiencies in peptides after AF, showed that MLF can be delayed, signaling its importance for bacterial growth and L-malic acid degradation during MLF [2].

Wine lees accumulated after fermentation, contain approximately 25% of dried matter, that consists of 25 to 35% tartrate salts, 35 to 45% microorganisms (predominantly yeasts) and 30 to 40% organic residues [3]. During vinification, through yeast autolysis there is a release of nitrogen compounds that could be beneficial for LAB [4]. The monitorization of nitrogen compounds during MLF and aging on lees in red wine with O.oeni  has revealed the breaking down of peptides and rise in free amino acid concentration, supporting the idea of proteolytic activity [5].

The aim of the present work was to observe the effect of the addition of different wine lees, produced in the vintage 2022 in the cellar (Mas dels Frares, Tarragona, Spain) by different vinification processes, on MLF.  Protein concentration, primary amino nitrogen, free amino acids and ammonia were determined in wine lees coming from red and white wine with different inoculation strategies and fermenting temperatures. The ones presenting greater differences in nitrogen compounds composition were selected for the addition in synthetic wine with pH 3.5, ethanol 12% (v/v) and low nitrogen content. MLFs were carried out at 20 °C with two different strains of O.oeni showing differences in MLF performance. Changes in nitrogen compounds during MLF were evaluated. Under most of the conditions, the lees addition (1 g/L) produced a reduction in the MLF duration in comparison with the control condition. This effect is bacteria strain and lees dependent. Overall, it was confirmed that the addition of wine lees could be beneficial. This effect could be linked to the proteins and amino acids input.

 

  1. Sumby, K.M., Bartle, L., Grbin, P.R., Jiranek, V., 2019. Measures to improve wine malolactic fermentation. Appl Microbiol Biotechnol 103, 2033–2051. https://doi.org/10.1007/s00253-018-09608-8
  2. Guilloux-Benatier, M., Remize, F., Gal, L., Guzzo, J., Alexandre, H., 2006. Effects of yeast proteolytic activity on Oenococcus oeni and malolactic fermentation. FEMS Microbiology Letters 263, 183–188. https://doi.org/10.1111/j.1574-6968.2006.00417.x
  3. Renouil, Y. and Feret, C., 1988. Dictionnaire du vin. Ed. Sezame, Boulogne sur Seine.
  4. Martínez-Rodríguez, A.J., Polo, M.C., 2000. Characterization of the Nitrogen Compounds Released during Yeast Autolysis in a Model Wine System. J. Agric. Food Chem. 48, 1081–1085. https://doi.org/10.1021/jf991047a
  5. Alcaide-Hidalgo, J.M., Moreno-Arribas, M.V., Polo, M.C., Pueyo, E., 2008. Partial characterization of peptides from red wines. Changes during malolactic fermentation and ageing with lees. Food Chemistry 107, 622–630. https://doi.org/10.1016/j.foodchem.2007.08.054

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Jacqueline Rodriguez Rey1, Montserrat Poblet2, Albert Bordons1, Nicolas Rozès2, Cristina Reguant1
1.Grup de Biotecnologia Enològica, Facultat d’Enologia, Universitat Rovira i Virgili
2.Grup de Biotecnologia Microbiana dels Aliments. Departament de Bioquímica i Biotecnologia, Facultat d’Enologia, Univer-sitat Rovira i Virgili

Contact the author*

Keywords

wine lees, malolactic fermentation, Oenococcus oeni, nitrogen compounds

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EMERGENCE OF INORGANIC PHOSPHONATE RESIDUES IN GRAPEVINE PLANT PARTS, BERRIES AND WINES FROM SOURCES OTHER THAN FOLIAR SPRAYING

Inorganic phosphonates are known to effectively support the control of grapevine downy mildew in vi- ticulture. Their application helps the plant to induce an earlier and more effective pathogen defense. However, inorganic phosphonates have been banned in organic viticulture due to their classification as plant protection products since October 2013. Despite the ban, phosphonate has been recently detected in organic wines.

IDENTIFICATION AND LEVELS OF PHENOLIC COMPOUNDS (TANINS, ANTHO-CYANS) IN RED VARIETAL WINES (PROKUPAC AND BLACK TAMJANIKA) FROM SERBIA

The phenolic compounds of red wines represent a source of numerous benefits for human health, which is why they are a constant subject of scientific research. Winemaking in Serbia has a growing economic significance, with particularly autochthonous varieties included [1]. This research identifies and quantifies phenolic compounds of Serbian red varietal wines of Prokupac and Black Tamjanika varieties. Quantification of the level of phenolics has been conducted, including molecular tannins [(+)-catechin, (-)-epicatechin, procyanidin dimers B1, B2, B3, B4], molecular anthocyanins, and the mean degree of polymerization of tannins by HPLC by UV detection, total antioxidant capacity via spectrophotometric methods and chromatic characteristics via CIELAB.

MOUSY OFF-FLAVOURS IN WINES: UNVEILING THE MICROORGANISMS BEHIND IT

Taints and off-flavours are one of the major concerns in the wine industry and even if the issues provoked by them are harmless, they can still have a negative impact on the quality or on the visual perception of the consumer. Nowadays, the frequency of occurrence of mousy off-flavours in wines has increased.
The reasons behind this could be the significant decrease in sulphur dioxide addition during processing, the increase in pH or even the trend for spontaneous fermentation in wine. This off-flavour is associated with Brettanomyces bruxellensis or some lactic acid bacteria metabolisms.

EXPLORING THE METABOLIC AND PHENOTYPIC DIVERSITY OF INDIGENOUS YEASTS ISOLATED FROM GREEK WINE

Climate change leads to even more hostile and stressful for the wine microorganism conditions and consequently issues with fermentation rate progression and off-character formation are frequently observed. The objective of the current research was to classify a great collection of yeast isolates from Greek wines based on their technological properties with oenological interest. Towards this direction, fourteen spontaneously fermented wines from different regions of Greece were collected for further yeast typing. The yeast isolates were subjected in molecular analyses and identification at species level.

PHOTO OXIDATION OF LUGANA WINES: INFLUENCE OF YEASTS AND RESIDUAL NITROGEN ON VSCS PROFILE

Lugana wines are made from Turbiana grapes. In recent times, many white and rosé wines are bottled and stored in flint glass bottles because of commercial appeal. However, this practice could worsen the aroma profile of the wine, especially as regards the development of volatile sulfur compounds (VSCs). This study aims to investigate the consequences of exposure to light in flint bottles on VSCs profile of Lugana wines fermented with two different yeasts and with different post-fermentation residual nitrogen.