terclim by ICS banner
IVES 9 IVES Conference Series 9 OTA DEGRADATION BY BACTERIAL LACCASEST

OTA DEGRADATION BY BACTERIAL LACCASEST

Abstract

Laccases from lactic acid bacteria (LAB) are described as multicopper oxidase enzymes with copper union sites. Among their applications, phenolic compounds’ oxidation and biogenic amines’ degrada-tion, have been described. Besides, the role of LAB in the toxicity reduction of ochratoxin A (OTA) has been reported (Fuchs et al., 2008; Luz et al., 2018). Fungal laccases, but not bacterial laccases, have been screened for OTA and mycotoxins’ degradation (Loi et al., 2018). OTA is a mycotoxin produced by some fungal species, such as Penicillium and Aspergillus sp., which infect grape bunches used for winemaking. OTA degradation is paramount given that it has been described as human-health harmful according to EFSA.

The work aimed to evaluate the OTA degrading capacity of three heterologous LAB laccases expressed in E. coli. The experimental procedure consisted on testing bacterial laccases from L. lactis, L. paracasei and P. parvulus in acetate buffer pH 4 with or without CuSO4 and OTA in presence and absence of several concentrations of epicatequin and complete polyphenolic extracts from red and white wine as media-tors. Degradation of OTA was followed and quantified by analyzing samples with HPLC-QToF-MS.

According to the results, OTA degradation in the reaction buffer with copper was at least three times higher than without copper. In addition, 0.75 mM epicatequin was the optimum concentration to obtain the highest OTA degradation with L. paracasei laccase (78%). Then, P. parvulus and L. lactis laccases were tested at this concentration, averaging 70% degradation. Finally, mean values of 40% and 10% OTA de-gradation were revealed when using polyphenolic extracts from red and white wine, respectively, for the three laccases. The application of these LAB laccases on OTA degradation in real wine needs to be further explored.

 

1. Fuchs S., et al. (2008). Food Chem Toxicol; 46:1398-1407.
2. Loi M., et al. (2018). Food Control; 90: 401-406.
3. Luz C., et al. (2018). Food Chem Toxicol; 112: 60-66.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Isaac Monroy¹, Isabel Pardo¹, Sergi Ferrer¹, José Pérez-Navarro², Sergio Gómez-Alonso²

1. ENOLAB, Institute BIOTECMED and Microbiology and Ecology Dept, University of Valencia
2. IRICA, University of Castilla-La Mancha

Contact the author*

Keywords

Ochratoxin A reduction, lactic acid bacteria laccases, polyphenolic compounds, redox media-tors

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

METABOLIC INTERACTIONS OF SACCHAROMYCES CEREVISIAE COCULTURES: A WAY TO EXTEND THE AROMA DIVERSITY OF CHARDONNAY WINE

Yeast co-inoculations in winemaking have been investigated in various applications, but most often in the context of modulating the aromatic profiles of wines. Our study aimed to characterize S. cerevisiae interactions and their impact on wine by taking an integrative approach. Three cocultures and corresponding pure cultures of S. cerevisiae were characterized according to their fermentative capacities, the chemical composition and aromatic profile of the associated Chardonnay wines. The various strains studied within the cocultures showed different behaviors regarding their development.

THE EFFECT OF PRE-FERMENTATIVE GLYPHOSATE ADDITION ON THE METABOLITE PROFILE OF WINE

The synthetic herbicide glyphosate has been used extensively in viticulture over many decades to combat weeds. Despite this, the possible influence of residual glyphosate on both the alcoholic fermentation of grape juice and the subsequent metabolite profile of wines has not been investigated. In this study, Pinot noir juice supplemented with different concentrations of glyphosate (0 µg L-1, 10 µg L-1 and 1000 µg L-1) was fermented with commercial Saccharomyces cerevisiae yeast strains. Using a combination of analytical methods, 80 metabolites were quantified in the resulting wines.

AROMA AND SENSORY CHARACTERIZATION OF XINOMAVRO RED WINES FROM DIFFERENT GREEK PROTECTED DESIGNATIONS OF ORIGIN, EFFECT OF TERROIR CHARACTERISTICS

The quality of wines has often been associated with their geographical area of production. The aim of this work was to characterize Protected Designation of Origin (PDO) Xinomavro red wines from different geographical areas of Amyndeon and Naoussa in Northern Greece, elaborated with variables that contribute to their differentiation, such as soil characteristics, altitude, monthly average temperature and rainfall.
Xinomavro fruit parcels from different vineyards within the two PDO zones (5 PDO Naoussa and 6 PDO Amyndeon) were vinified following a standard winemaking process. A total of 25 aroma compounds were quantified using gas chromatography-mass spectrometry (GC-MS) with simultaneous full scan and selected ion monitoring for data recording, and odor activity values (OAVs) were determined.

USE OF 13C CP/MAS NMR AND EPR SPECTROSCOPIC TECHNIQUES TO CHARACTERIZE MACROMOLECULAR CHANGES IN OAK WOOD(QUERCUS PETRAEA) DURING TOASTING

For coopers, toasting process is considered a crucial step in barrel production during which oak wood (Q. petraea) develops several aromatic nuances released to the wine during its maturation. Toasting consists of applying different degrees of heat to a barrel for a specific period. As the temperature increases, thermal degradation of oak wood structure produces a huge range of chemical compounds. Many studies have identified the main key aroma volatile compounds (whisky-lactone, furfural, eugenol, guaiacol, vanillin). However, detailed information on how the chemical structure of oak wood degrades with increasing toasting level is still lacking.

METHYL SALICYLATE, A COMPOUND INVOLVED IN BORDEAUX RED WINES PRODUCED WITHOUT SULFITES ADDITION

Sulfur dioxide (SO₂) is the most commonly used additive during winemaking to protect wine from oxidation and from microorganisms. Thus, since the 18th century, SO₂ was almost systematically present in wines. Recently, wines produced without any addition of SO₂ during all the winemaking process including bottling became more and more popular for consumers. A recent study dedicated to sensory characterization of Bordeaux red wines produced without added SO₂, revealed that such wines were perceived differently from similar wines produced with using SO₂ and were characterized by specific fruity aromas and coolness1,2.