terclim by ICS banner
IVES 9 IVES Conference Series 9 AGEING REVEALS THE TERROIR OF AGED RED BORDEAUX WINES REGARDLESS OF THE VINTAGES! TARGETED APPROACH USING ODOROUS COMPOUNDS LEVELS INCLUDING TERPENES AND C13 NORISOPRENOIDS

AGEING REVEALS THE TERROIR OF AGED RED BORDEAUX WINES REGARDLESS OF THE VINTAGES! TARGETED APPROACH USING ODOROUS COMPOUNDS LEVELS INCLUDING TERPENES AND C13 NORISOPRENOIDS

Abstract

The chemistry of wine is notably complex and is modified by ageing of the bottles. The composition of wines is the result of vine production (under the influence of vintage, climate and soils); yeast production (under the influence of juice composition and fermentation management); lactic bacteria production (under the influence of young wine composition and malolactic fermentation management); and of the ageing process either in vats, barrels or bottles or both. The composition is linked to the quality perceived by consumers but also to their origin, sometimes associated to the “terroir” concept.

Even if the chemical identity of a wine is shaped by a large variety of factors (soil, climate, varieties, microbiology, ageing process), we know now that the terroir and the maturation plays a key role in the sensorial and chemical identity of wines even after ageing (1–4). The aims of that study was to explore the links between terroir, ageing or vintages and the chemical composition. A targeted approach have been tested. It involves the quantification of molecular markers such as esters, terpenes, norisoprenoids or sulphur compounds. It have been applied to a large set of wines composed by 80 samples produced by 7 wineries during a selection of vintages between 1990 to 2007. The statistical analysis of the results permits to highlight similar compositions between wines produced in the same winery despite the variation of berry composition due to the vintage, the variations dues to technical choices and to ageing time. In the current study, the whole volatile composition is essential to the uniqueness of the wines because there are no compounds that are exclusively involved in discrimination of estate. This shows the complex effect of the grape and wine matrix on achieving a typical product. Overall, in the aromatic matrix, there is an existence of a hierarchy in the importance of compounds that permits the unicity of Bordeaux estate. Hence, three families of compounds (terpenes, norisoprenoids and esters) which made it possible to discriminate between the seven Bordeaux estates studied and are therefore influenced by the composition of the grapes. These include TDN, vitispirane, β-damascenone, terpinen-1-ol, α-terpinene, methyl salicylate, cis-linalooxide, ethyl esters of fatty acids (C₄C₂, C₆C₂, C₈C₂) and many others. It’s interesting to note that even after years of bottle ageing, the imprint of the grape is still visible. The personality of each estate through its specific terroir is therefore an indispensable element for the aromatic singularity of each great wine.

 

1. Le Menn N, van Leeuwen C, Picard M, riquier laurent, de Revel G, Marchand S. Effect of vine water and nitrogen status, as well as temperature, on some aroma compounds of aged red Bordeaux wines. J Agric Food Chem. 2 juin 2019;acs.jafc.9b00591.
2. Luzzini G, Slaghenaufi D, Pasetto F, Ugliano M. Influence of grape composition and origin, yeast strain and spontaneous fermentation on aroma profile of Corvina and Corvinone wines. LWT. mai 2021;143:111120.
3. Van Leeuwen C, Barbe JC, Darriet P, Geffroy O, Gomès E, Guillaumie S, et al. Recent advancements in understanding the terroir effect on aromas in grapes and wines: This article is published in cooperation with the XIIIth International Terroir Congress November 17-18 2020, Adelaide, Australia. Guests editors: Cassandra Collins and Roberta De Bei. OENO One [Internet]. 5 nov 2020 [cité 18 janv 2021];54(4). Disponible sur: https://oeno-one.eu/article/view/3983
4. Van Leeuwen C, Barbe JC, Darriet P, Destrac-Irvine A, Gowdy M, Lytra G, et al. Aromatic maturity is a cornerstone of terroir expression in red wine: This article is published in cooperation with Terclim 2022 (XIVth International Terroir Congress and 2nd ClimWine Symposium), 3-8 July 2022, Bordeaux, France. OENO One. 24 juin 2022;56(2):335-51.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Justine Laboyrie¹, Davide Slagheunaufi², Giovani Luzzini², Maurizio Ugliano², Warren Albertin¹, Laurent Riquier¹, Gilles de Revel¹, Stéphanie Marchand¹.

1. Unité de Recherche Œnologie, UMR 1366 INRAE, ISVV, University of Bordeaux, Bordeaux INP, Villenave d’Ornon, 33882, France
2. University of Verona, Department of Biotechnology, Villa Lebrecht, via della Pieve 70, San Pietro in Cariano, 37029, Italy

Contact the author*

Keywords

Wine identity, Aroma compounds, Terroir, Ageing

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

Molecular approaches for understanding and modulating wine taste

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol (tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.

METABOLIC INTERACTIONS OF SACCHAROMYCES CEREVISIAE COCULTURES: A WAY TO EXTEND THE AROMA DIVERSITY OF CHARDONNAY WINE

Yeast co-inoculations in winemaking have been investigated in various applications, but most often in the context of modulating the aromatic profiles of wines. Our study aimed to characterize S. cerevisiae interactions and their impact on wine by taking an integrative approach. Three cocultures and corresponding pure cultures of S. cerevisiae were characterized according to their fermentative capacities, the chemical composition and aromatic profile of the associated Chardonnay wines. The various strains studied within the cocultures showed different behaviors regarding their development.

2-YEARS STUDY ON COMPARISON BETWEEN THE VOLATILE CHEMICAL PROFILE OF TWO DIFFERENT BLENDS FOR THE ENHANCEMENT OF “VALPOLICELLA SUPERIORE”

Valpolicella is a famous wine producing region in the province of Verona owing its fame above all to the production of two Protected Designation of Origins (PDOs) withered wines: Amarone and Recioto. In recent years, however, the wineries have been interested in the enhancement and qualitative increase of another PDO, Valpolicella Superiore. All the Valpolicella PDOs wines are produced with a unique grape blend, mainly Corvina, Corvinone, Rondinella and a range of other minor varieties.From 2019 Valpolicella product regulation has changed the grape proportion of the blend allowing new composition parameters of wines. For this reason, studying the volatile chemical profiles to support wine makers in the effort to produce high quality wines represents a field of great interest.

ANTHOCYANINS EXTRACTION FROM GRAPE POMACE USING EUTECTIC SOLVENTS

Grape pomace is one of the main by-products generated after pressing in winemaking.Emerging methods, such as ultrasound-assisted extraction with eutectic mixtures, have great potential due to their low toxicity, and high biodegradability. Choline chloride (ChCl) was used as a hydrogen bond acceptor and its corresponding hydrogen bond donor (malic acid, citric acid, and glycerol: urea). Components were heated at 80 °C and stirred until a clear liquid was obtained. Distilled water was added (30 % v/v). A solid-liquid ratio of 1 g pomace per 10 ml of eutectic solvent was used.

MONITOR SOME KEY PARAMETERS THROUGH THE IMPLEMENTATION OFCONTINUOUS CONTROL SYSTEMS OF THE MUST-WINE DURING MACERATION-FERMENTATION IN RED WINEMAKING TO MANAGE OPERATIONS IN “AUTOMATION”

This study is aimed to develop a complete tool for the winemaker with, complete and targeted “winemaking recipes” that can be adapted to criteria set by the winemaker, such as: grape variety, grape health status, degree of ripening, desired wine, redox status throughout the alcoholic fermentation.
To get such aim, specific sets of experiments using red grape juices from different varieties (Nebbiolo, Barbera, Pinot noir, etc.) collected at different technological and phenolic maturity points, will be held with “automatized 4.0 tanks” equipped with sensors for measuring: redox potential, dissolved oxygen, relative density, temperature, and color in order to collect a sufficient amount of data preparatory to the creation of operating models in the most widely winemaking situations in which the automatized 4.0 tanks “will be able to independently respond” with the right corrective actions (opening/closing aeration valve, execution/block pumping overs , etc.) if the key parameters exceed the limits of the recommended ranges set in the selected recipe.