terclim by ICS banner
IVES 9 IVES Conference Series 9 EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

Abstract

In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2]. Nevertheless, this by-product could become a source of interesting compounds, such as mannoprotein rich extracts (MRE). Therefore, the aim of this work was to obtain MRE from different lees, to characterize them, and to evaluate their effect on wine colour and on the phenolic composition of red wines.

Red, rosé and white wines were used as sources of lees, which were collected after the alcoholic fermentation with different Saccharomyces cerevisiae commercial varieties. The extraction of MRE was performed by physical extraction (autoclave) followed by a purification with ethanol. The protein and polysaccharidic moieties of the purified extracts were characterized by SDS-PAGE, Lowry method, HR-SEC-RID and HPLC-DAD-MS. The obtained MRE were added to a red wine (Vitis vinifera L. cv Tempranillo) and the changes in the phenolic composition and colour were analysed by HPLC-DAD-MS and triestimulus colorimetry, respectively, before and after the stabilization of the wine (involving cold treatment). Results obtained showed that the extraction yield of MRE was efficient (~ 40 mg/g wet lees) for all types of lees assayed, which supports the valorisation of wine lees as a sustainable source of MRE. Interestingly, MRE presented important structural and compositional differences, both in the protein content and in the polysaccharidic profile, although the source of lees, namely red, white and rosé wines, was not the main factor determining these differences, but the winemaking techniques or the S. cerevisiae strain employed. Furthermore, the addition of the MRE to red wine had an effect on the stabilization of wine colour and its phenolic content that rely mainly on the saccharidic characteristics of each MRE. These results pointed out that MRE from wine less could be a potential tool to improve the colloidal stability of wine phenolic compounds.

 

1. Oliveira & Duarte, 2016. Front. Environ. Sci. Eng., 10(1): 168–176.
2. De Iseppi et al., 2020. Food Res. Int., 137, 109352. 

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Marcos, Martín-Andrés¹; Ignacio, García-Estévez¹; M. Teresa, Escribano-Bailón¹; Elvira Manjón¹

1. Department of Analytical Chemistry, Nutrition and Food Science, Universidad de Salamanca, Salamanca, E37007, Spain

Contact the author*

Keywords

lees, mannoprotein, colour wine, phenolic compounds

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

EMERGENCE OF INORGANIC PHOSPHONATE RESIDUES IN GRAPEVINE PLANT PARTS, BERRIES AND WINES FROM SOURCES OTHER THAN FOLIAR SPRAYING

Inorganic phosphonates are known to effectively support the control of grapevine downy mildew in vi- ticulture. Their application helps the plant to induce an earlier and more effective pathogen defense. However, inorganic phosphonates have been banned in organic viticulture due to their classification as plant protection products since October 2013. Despite the ban, phosphonate has been recently detected in organic wines.

Beyond liking scores: the importance of the drinking experience to understand our consumers

The presentation will approach the understanding of wine consumers´ perception based on the experiential model suggested by Warell (2008). In this framework, wine consumption gives rise to a
variety of experiences related to the perception, understanding, and judgment of the product. These
multidimensional facets of the drinking experience can be explored by measuring affective, cognitive,
and sensory responses of consumers, which are shown to be stable regardless of the social context.

IMPACT OF MUST NITROGEN DEFICIENCY ON WHITE WINE COMPOSITION DEPENDING ON GRAPE VARIETY

Nitrogen (N) nutrition of the vineyard strongly influences the must and the wine compositions. Several chemical markers present in wine (i.e., proline, succinic acid, higher alcohols and phenolic compounds) have been proposed for the cultivar Chasselas, as indicators of N deficiency in the grape must at harvest [1]. Grape genetics potentially influences the impact of N deficiency on grape composition, as well as on the concentration of potential indicators in the wine. The goal of this study was to evaluate if the che- mical markers found in Chasselas wine can be extended for other white wines to indicate N deficiency in the grape must.

SENSORY EVALUATION OF WINE AROMA: SHOULD COLOR-DRIVEN DESCRIPTORS BE USED?

The vocabulary used to describe wine aroma is commonly organized according to color, raising the question of whether they reflect the reality of olfactory perception. Previous studies have assumed this convention of color-aroma matching, and have investigated color’s influence on the perception of aroma only in dyed white wine or in red wine from particular places of origin. Here 48 white and red varietal wines from around the world were evaluated in black glasses then in clear glasses by a panel of wine experts, who gave intensity ratings for aroma attributes commonly used by wine professionals. In black glasses, aromas conventionally associated with white wine were perceived in the red wines, and vice versa.

NEW PLANT BIOPOLYMERS FOR THE COLLOIDAL STABILITY OF THE COLORING MATTER OF RED WINES

The color as well as the “clarity” of red wines are ones of the qualities required by the consumers. Red wines must have colloidal stability from its bottling to its consumption. The supplementation of red wines with additives, and especially Acacia senegal gum, contributes to its organoleptic properties such as the colloidal stabilization of the coloring matter. In a global perspective of limitation of additives in the field of enology, one of the objectives is notably (i) to reduce the use of additives in wines, by their number and/or their quantity, and (ii) to favor the use of natural additives while preserving the organoleptic and sensory qualities of wines.