terclim by ICS banner
IVES 9 IVES Conference Series 9 YEAST LEES OBTAINED AFTER STARMERELLA BACILLARIS FERMENTATION AS A SOURCE OF POTENTIAL COMPOUNDS TO IMPROVE SUSTAINABILITY IN WINE- MAKING

YEAST LEES OBTAINED AFTER STARMERELLA BACILLARIS FERMENTATION AS A SOURCE OF POTENTIAL COMPOUNDS TO IMPROVE SUSTAINABILITY IN WINE- MAKING

Abstract

The yeast residue left over after wine-making, known as wine yeast lees, is a source of various compounds that are of interest for wine and food industry. In winemaking, yeast-derived glycocompounds and proteins represent an example of circular economy approach since they have been proven to reduce the need for bentonite and animal-based fining agents. This leads to a reduced environmental impact in the stabilization and fining processes in winemaking. (de Iseppi et al., 2020, 2021). The recent discovery of the wine-making potential of the non-Saccharomyces yeast Starmerella bacillaris has sparked new interest in the use of this species for lees valorization, due to its potential difference in cellular composition from the conventional wine yeast Saccharomyces cerevisiae (Lemos et al., 2016; Moreira et al., 2022). To investigate the cell compositions of yeasts present in the lees, 5 strains of Starmerella bacillaris and Saccharomyces cerevisiae were grown in winemaking conditions. After cells harvesting, different cell components (from cell wall and cytoplasm) were separated by means of cell breakage with glass beads and further enzymatic or chemical treatments. The fractions were characterized in respect of sugar and protein content, by means of HPLC and SDS-PAGE separation, evidencing differences between the species in terms of mannose, glucose and N-acetylglucosamine profile, protein content and protein molecular size. To investigate the practical implications on winemaking, the fractions were tested on wine as agents of protein stabilization and fining. This allowed to make some preliminary evaluation about the potential applications of Starmerella bacillaris as yeast derivatives, obtained from yeast lees.

 

1. de Iseppi, A., Lomolino, G., Marangon, M., & Curioni, A. (2020). Current and future strategies for wine yeast lees valorization. In Food Research International (Vol. 137). Elsevier Ltd. https://doi.org/10.1016/j.foodres.2020.109352
2. de Iseppi, A., Marangon, M., Vincenzi, S., Lomolino, G., Curioni, A., & Divol, B. (2021). A novel approach for the valorization of wine lees as a source of compounds able to modify wine properties. LWT, 136. https://doi.org/10.1016/j.lwt.2020.110274
3. Lemos, W. J., Bovo, B., Nadai, C., Crosato, G., Carlot, M., Favaron, F., Giacomini, A., & Corich, V. (2016). Biocontrol ability and action mechanism of Starmerella bacillaris (synonym Candida zemplinina) isolated from wine musts against gray mold di-sease agent Botrytis cinerea on grape and their effects on alcoholic fermentation. Frontiers in Microbiology, 7(AUG). https://doi.org/10.3389/fmicb.2016.01249
4. Moreira, L. de P. D., Nadai, C., Duarte, V. da S., Brearley-Smith, E. J., Marangon, M., Vincenzi, S., Giacomini, A., & Corich, V.(2022). Starmerella bacillaris Strains Used in Sequential Alcoholic Fermentation with Saccharomyces cerevisiae Improves Protein Stability in White Wines. Fermentation, 8(6), 252. https://doi.org/10.3390/FERMENTATION8060252/S1

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Poster

Authors

Zeno Molinelli 1,3, Chiara Nadai 2,3, Simone Vincenzi 1,3, Alessio Giacomini ¹, Celine Sparrow ⁴, Paolo Antoniali ⁵, Daniele Pizzinato ⁴, Antoine Gobert ⁴ and Viviana Corich 1,3

1. Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of   Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy
2. Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova,Viale dell’Università 16, 35020 Legnaro, PD, Italy
3. Interdepartmental Centre for Research in Viticulture and Enology (CIRVE), University of Padova,Viale XXVIII Aprile 14, 31015 Conegliano, TV, Italy
4. SAS Sofralab, 79 Ave AA Thevenet,BP 1031, Magenta, France
5. Italiana Biotecnologie, Via Vigazzolo 112, I-36054 Montebello Vicentino, Italy

Contact the author*

Keywords

non-saccharomyces yeast, Yeast cell walls, Yeast protein extracts, Yeast polysaccharides

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

AROMA AND SENSORY CHARACTERIZATION OF XINOMAVRO RED WINES FROM DIFFERENT GREEK PROTECTED DESIGNATIONS OF ORIGIN, EFFECT OF TERROIR CHARACTERISTICS

The quality of wines has often been associated with their geographical area of production. The aim of this work was to characterize Protected Designation of Origin (PDO) Xinomavro red wines from different geographical areas of Amyndeon and Naoussa in Northern Greece, elaborated with variables that contribute to their differentiation, such as soil characteristics, altitude, monthly average temperature and rainfall.
Xinomavro fruit parcels from different vineyards within the two PDO zones (5 PDO Naoussa and 6 PDO Amyndeon) were vinified following a standard winemaking process. A total of 25 aroma compounds were quantified using gas chromatography-mass spectrometry (GC-MS) with simultaneous full scan and selected ion monitoring for data recording, and odor activity values (OAVs) were determined.

EVALUATION OF THE OENOLOGICAL POTENTIAL OF NEW RESISTANT VARIETIES MEETING TYPICAL BORDEAUX CHARACTERISTICS

Varietal innovation is a major lever for meeting the challenges of the agro-ecological transition of vi-neyards and their adaptation to climate change. To date, selection work has already begun in the Bordeaux region through the Newvine project. The aim of this project is to create new vine varieties with resistance to mildew and powdery mildew, adapted to the climatic conditions of the Bordeaux region and enabling the production of wines that are in line with consumer tastes and the expected typicity of Bordeaux wines.

Influence of agrophotovoltaic on vine and must in a cool climate

The current energy crisis means that interest in agrophotovoltaics has increased significantly. The reason behind this is that the system aims to combine agricultural production with energy production. During the three-year period from 2020 to 2022, the effects of photovoltaic panels on the vine, the yield and the quality of the must were studied in Walenstadt in northern Switzerland, an area with a cool, humid climate. 65 Pinot noir vines were planted in the 160m2 study area. Because of the large edge effects, only 3 repetitions with 4 vines each could be created. A significantly lower leaf infestation by Plasmopara viticola was observed among the panels in each of the three years.

REGULATION OF CENTRAL METABOLISM IN THE LEAVES OF A GRAPE VINES VA- RIETAL COLLECTION ON A TEMPERATURE CLINE

Grape (Vitis vinifera) is one of the world’s oldest agricultural fruit crops, grown for wine, table grape, raisin, and other products. One of the factors that can cause a reduction in the grape growing area is temperature rise due to climate change. Elevated temperature causes changes in grapevine phenology and fruit chemical composition. Previous studies showed that grape varieties respond differently to a temperature shift of 1.5°C; few varieties had difficulties in the fruit development or could not reach the desired Brix level.

EVALUATING WINEMAKING APPLICATIONS OF ULTRAFILTRATION TECHNOLOGY

Ultrafiltration is a process that fractionates mixtures using semipermeable membranes, primarily on the basis of molecular weight. Depending on the nominal molecular weight cut-off (MWCO) specifications of the membrane, smaller molecules pass through the membrane into the ‘permeate’, while larger molecules are retained and concentrated in the ‘retentate’. This study investigated applications of ultrafiltration technology for enhanced wine quality and profitability. The key objective was to establish to what extent ultrafiltration could be used to manage phenolic compounds (associated with astringency or bitterness) and proteins (associated with haze formation) in white wine.