GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Exploring the plasticity of the grapevine drought physiology

Exploring the plasticity of the grapevine drought physiology

Abstract

Context and purpose of the study ‐ Grapevine response to water deficit has been extensively studied. Nevertheless, debate still exists regarding some physiology adoption under drought, e.g. vulnerability to cavitation or iso‐anisohydric classification, among others. Discrepancies between published results, other than specific experimental setup, are attributed to environment/climate conditions and genotypes used. Indeed, the same genotype could exhibit a different phenotype under different climates (i.e. phenotypic plasticity). To date little information is available regarding the plasticity extent of certain traits related to drought response in grapevines. Here we present the results of a novel experiment, where a single genotype was exposed to similar water stress conditions in two different locations characterized by different climatic conditions.

Material and methods ‐ 90 plants of Grüner Veltliner grafted on 5BB rootstock were grown in pots during the 2016 season in Tulln (N‐E Austria). In January 2017 and after pruning, half of the vines were transported to Udine (N‐E Italy). In both locations, vines were re‐potted in 20L pots and filled with the same commercial potting media supplemented with 30% perlite. Then, pots were arranged in rows that were covered using a plastic film roof to prevent rain. Water was supplemented by drip irrigation and a set of vines were positioned under weighting mini‐lysimeters to measure ETc. Climate data was recorded by a weather station in each site. Vines were irrigated daily to 100% ETc until the imposition of water stress (WS) towards the end of June (pre‐veraison, E‐L 33). WS vines were daily irrigated 30% ETc of WW, ecophysiological data recorded frequently, and berry/leaf tissues sampled. The experiment was carried out for two consecutive vintages on the same vines.

Results ‐ Climatic variables were different between sites and deficit irrigation based on ETc yielded different results in terms of water stress intensity. In both years, well‐watered controls in Tulln never reached water potential below ‐0.7 MPa while those in Udine reached values as low as ‐1.2 MPa. Although the pot volumes and soil type used was the same, differences in atmospheric water demand determined different irrigation volumes between sites. Also, WS vines in Udine reached Ψstem values much lower than in Tulln, impacting differently as well some berry ripening parameters. Interestingly, the stomatal conductance (gs) response to Ψstem was different between sites: in Udine gs reached values <50 mmol H2O m‐2 s‐2 at Ψstem values much lower (‐1.2 MPa) than in Tulln (‐0.8 MPa), showing how gs/Ψ often used as indicators for iso‐anisohydric classification are influenced by environmental conditions. Finally, the WUEi was different among sites in 2018, determining a better performance of the vines in Tulln compared with those in Udine. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Jose Carlos HERRERA (1), Katja ŠUKLJE (2), Stefania SAVOI (1), Alberto CALDERAN (3), Lorena BUTINAR (2), Enrico PETERLUNGER (3), Giorgio ALBERTI (3), Paolo SIVILOTTI (3), Astrid FORNECK (1)

(1) Universität für Bondenkultur (BOKU), Institute of Viticulture and Pomology, Konrad‐Lorenz Str. 24, 3430 Tulln, Austria
(2) University of Nova Gorica, Wine Research Centre, Glavni trg 8, 5271 Vipava, Slovenia
(3) University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, via delle Scienze 206, 33100 Udine, Italy

Contact the author

Keywords

deficit irrigation, water relations, berry ripening

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Effect of application of kaolin and pinolene on grape berry cell death, berry shrinkage, and ethanol accumulation

Cell death in Vitis vinifera L. berries late in ripening and berry shrinkage (loss of mass) can decrease yield and reduce grape quality in cultivars such as Cabernet Sauvignon

INVESTIGATION OF FILM COATINGS AS A PROTECTIVE LAYER IN REDUCING THE ABSORPTION OF SMOKE PHENOLS INTO PINOT NOIR GRAPES

Wine grapes exposed to wildfire smoke have resulted in wines with burnt and ashy sensory characteristics¹, that are undesirable qualities in wine. In extreme wildfire events, this can lead to total loss of grape crop. Currently there are no effective solutions in the market to prevent the uptake of smoke compounds into grapes. In this study, previously developed innovative film coatings were tested to analyze their effectiveness in reducing smoke phenol absorption². Four different cellulose nanofiber-based film types were investigated.

A vine physiology-based terroir study in the AOC-Lavaux region in Switzerland

Understanding how different pedoclimatic conditions interact with vine and berry physiology, and subsequently impact wine quality, is paramount for an good valorization of viticultural terroirs and can help to optimize mitigation strategies in the face of global warming

SENSORY DEFINITION OF A TECHNICAL UNAVOIDABLE TRANSFER OF AROMA COMPOUNDS VIA SEALING IN A BOTTLING LINE IN ORDER TO PREVENT PROSECUTION DUE TO FRAUDULENT AROMATIZATION OF A SUBSEQUENTLY FILLED WINE

In 2020, 12% of all bottled German wines were aromatized, which may increase further due to rising popularity of dealcoholized wines. As sealing polymers of a bottling line absorb aroma compounds and may release them into regular wines in the next filling¹, this unintentional carry-over bears the risk to violate the legal ban of any aromatization of regular wine. However, following EU legislation, German food control authorities accept a technical unavoidable transfer of aroma compounds, if this is of no sensory significance.

Impact and comprehension of nitrogen and lipid nutrition on the production of fermentative aromas with different S. Cerevisiae yeasts used for spirits

In the Cognac appellation, the production of white wines is almost exclusively dedicated to elaborate Charentaise eaux-de-vie. In this sense, the quality of Cognac eaux-de-vie intrinsically depends on the quality of the base wines subjected to the distillation stage. In this context, the production of these base wines differs from those of classic white wines to release particular organoleptic properties during the distillation stage.