GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Exploring the plasticity of the grapevine drought physiology

Exploring the plasticity of the grapevine drought physiology

Abstract

Context and purpose of the study ‐ Grapevine response to water deficit has been extensively studied. Nevertheless, debate still exists regarding some physiology adoption under drought, e.g. vulnerability to cavitation or iso‐anisohydric classification, among others. Discrepancies between published results, other than specific experimental setup, are attributed to environment/climate conditions and genotypes used. Indeed, the same genotype could exhibit a different phenotype under different climates (i.e. phenotypic plasticity). To date little information is available regarding the plasticity extent of certain traits related to drought response in grapevines. Here we present the results of a novel experiment, where a single genotype was exposed to similar water stress conditions in two different locations characterized by different climatic conditions.

Material and methods ‐ 90 plants of Grüner Veltliner grafted on 5BB rootstock were grown in pots during the 2016 season in Tulln (N‐E Austria). In January 2017 and after pruning, half of the vines were transported to Udine (N‐E Italy). In both locations, vines were re‐potted in 20L pots and filled with the same commercial potting media supplemented with 30% perlite. Then, pots were arranged in rows that were covered using a plastic film roof to prevent rain. Water was supplemented by drip irrigation and a set of vines were positioned under weighting mini‐lysimeters to measure ETc. Climate data was recorded by a weather station in each site. Vines were irrigated daily to 100% ETc until the imposition of water stress (WS) towards the end of June (pre‐veraison, E‐L 33). WS vines were daily irrigated 30% ETc of WW, ecophysiological data recorded frequently, and berry/leaf tissues sampled. The experiment was carried out for two consecutive vintages on the same vines.

Results ‐ Climatic variables were different between sites and deficit irrigation based on ETc yielded different results in terms of water stress intensity. In both years, well‐watered controls in Tulln never reached water potential below ‐0.7 MPa while those in Udine reached values as low as ‐1.2 MPa. Although the pot volumes and soil type used was the same, differences in atmospheric water demand determined different irrigation volumes between sites. Also, WS vines in Udine reached Ψstem values much lower than in Tulln, impacting differently as well some berry ripening parameters. Interestingly, the stomatal conductance (gs) response to Ψstem was different between sites: in Udine gs reached values <50 mmol H2O m‐2 s‐2 at Ψstem values much lower (‐1.2 MPa) than in Tulln (‐0.8 MPa), showing how gs/Ψ often used as indicators for iso‐anisohydric classification are influenced by environmental conditions. Finally, the WUEi was different among sites in 2018, determining a better performance of the vines in Tulln compared with those in Udine. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Jose Carlos HERRERA (1), Katja ŠUKLJE (2), Stefania SAVOI (1), Alberto CALDERAN (3), Lorena BUTINAR (2), Enrico PETERLUNGER (3), Giorgio ALBERTI (3), Paolo SIVILOTTI (3), Astrid FORNECK (1)

(1) Universität für Bondenkultur (BOKU), Institute of Viticulture and Pomology, Konrad‐Lorenz Str. 24, 3430 Tulln, Austria
(2) University of Nova Gorica, Wine Research Centre, Glavni trg 8, 5271 Vipava, Slovenia
(3) University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, via delle Scienze 206, 33100 Udine, Italy

Contact the author

Keywords

deficit irrigation, water relations, berry ripening

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

In vitro tissue culture as a tool for Croatian grapevine germplasm management

In vitro culture makes it possible to carry out specific studies that would not be possible with whole plants grown in the field or in a greenhouse. Cryopreservation allows long-term preservation without metabolic changes in the plant material and cryotherapy can be efficient in virus elimination, which is a major scientific challenge.
The preculture media of cryopreservation protocols were evaluated on three Croatian grape varieties with different antioxidants (salicylic acid, ascorbic acid and glutathione). The highest growth in vitro was achieved on the medium with the addition of glutathione and the lowest with the addition of salicylic acid.

Taking advantages of innovative chemometric tools to unveil vineyard ecosystem dynamics: look across volatile secondary metabolites

Sustainable viticulture and winemaking continue to represent huge challenges, where a better knowledge about the functional role of biodiversity in the vineyard ecosystems is required.

Preliminary study of extraction of polysaccharides from pomace by high powered ultrasonic combined with enzymes

Red grape pomace can be an important source of polysaccharides, but currently they are little studied and even less with viable and environmental extraction processes (green extraction). These green techniques must be able to break the cell wall so that the compounds contained in the cells, including polysaccharides, are released and can have a great influence on extraction yields, the chemical structure of polysaccharides and applications in wines. Amongst the emerging green techniques most applied to the extraction of bioactive compounds, such as polysaccharides, high-power ultrasound (US) and enzyme-assisted extraction stand out.

Spatial characterization of land use in the viticultural Maipo Valley (Chile), using aster image digital processing

L’entreprise viticole Concha y Toro S.A. gère environ 600 ha de vignes dans la Vallée du Maipo (A.O. Valle del Maipo). L’objectif est celui de caractériser spatialement ces vignobles et leur occupation du sol environnante. Le choix s’est porté vers la démarche de zonage viticole par l’analyse spatiale, utilisant des traitements d’images satellitaires afin d’avoir une vision synoptique de la zone à moindres coûts et délais. Un système d’informations géographiques (SIG) est construit à partir des données suivantes : cartes topographiques, géologique, fond cadastral numérique, images satellitaires. Un modèle numérique de terrain est par ailleurs construit à une résolution de 25 m à partir des cartes topographiques.

An internet-based gis application for vineyard site assessment in the U.S. and matching grape variety to site

Vineyard site selection and determination of adapted grape varieties for a site are the most fundamental factors contributing to vineyard success, but can be challenging to ascertain