GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Exploring the plasticity of the grapevine drought physiology

Exploring the plasticity of the grapevine drought physiology

Abstract

Context and purpose of the study ‐ Grapevine response to water deficit has been extensively studied. Nevertheless, debate still exists regarding some physiology adoption under drought, e.g. vulnerability to cavitation or iso‐anisohydric classification, among others. Discrepancies between published results, other than specific experimental setup, are attributed to environment/climate conditions and genotypes used. Indeed, the same genotype could exhibit a different phenotype under different climates (i.e. phenotypic plasticity). To date little information is available regarding the plasticity extent of certain traits related to drought response in grapevines. Here we present the results of a novel experiment, where a single genotype was exposed to similar water stress conditions in two different locations characterized by different climatic conditions.

Material and methods ‐ 90 plants of Grüner Veltliner grafted on 5BB rootstock were grown in pots during the 2016 season in Tulln (N‐E Austria). In January 2017 and after pruning, half of the vines were transported to Udine (N‐E Italy). In both locations, vines were re‐potted in 20L pots and filled with the same commercial potting media supplemented with 30% perlite. Then, pots were arranged in rows that were covered using a plastic film roof to prevent rain. Water was supplemented by drip irrigation and a set of vines were positioned under weighting mini‐lysimeters to measure ETc. Climate data was recorded by a weather station in each site. Vines were irrigated daily to 100% ETc until the imposition of water stress (WS) towards the end of June (pre‐veraison, E‐L 33). WS vines were daily irrigated 30% ETc of WW, ecophysiological data recorded frequently, and berry/leaf tissues sampled. The experiment was carried out for two consecutive vintages on the same vines.

Results ‐ Climatic variables were different between sites and deficit irrigation based on ETc yielded different results in terms of water stress intensity. In both years, well‐watered controls in Tulln never reached water potential below ‐0.7 MPa while those in Udine reached values as low as ‐1.2 MPa. Although the pot volumes and soil type used was the same, differences in atmospheric water demand determined different irrigation volumes between sites. Also, WS vines in Udine reached Ψstem values much lower than in Tulln, impacting differently as well some berry ripening parameters. Interestingly, the stomatal conductance (gs) response to Ψstem was different between sites: in Udine gs reached values <50 mmol H2O m‐2 s‐2 at Ψstem values much lower (‐1.2 MPa) than in Tulln (‐0.8 MPa), showing how gs/Ψ often used as indicators for iso‐anisohydric classification are influenced by environmental conditions. Finally, the WUEi was different among sites in 2018, determining a better performance of the vines in Tulln compared with those in Udine. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Jose Carlos HERRERA (1), Katja ŠUKLJE (2), Stefania SAVOI (1), Alberto CALDERAN (3), Lorena BUTINAR (2), Enrico PETERLUNGER (3), Giorgio ALBERTI (3), Paolo SIVILOTTI (3), Astrid FORNECK (1)

(1) Universität für Bondenkultur (BOKU), Institute of Viticulture and Pomology, Konrad‐Lorenz Str. 24, 3430 Tulln, Austria
(2) University of Nova Gorica, Wine Research Centre, Glavni trg 8, 5271 Vipava, Slovenia
(3) University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, via delle Scienze 206, 33100 Udine, Italy

Contact the author

Keywords

deficit irrigation, water relations, berry ripening

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Narrow terraces and alternative training systems for steep sloop viticulture – Douro region

In Douro Region, vineyards are usually planted on hillsides with steep sloops. The models currently used for planting those vineyards are, depending on the initial slope of the hillside, vertical planting or terraces.

Terroir analysis and its complexity

Terroir is not only a geographical site, but it is a more complex concept able to express the “collective knowledge of the interactions” between the environment and the vines mediated through human action and “providing distinctive characteristics” to the final product (OIV 2010). It is often treated and accepted as a “black box”, in which the relationships between wine and its origin have not been clearly explained. Nevertheless, it is well known that terroir expression is strongly dependent on the physical environment, and in particular on the interaction between soil-plant and atmosphere system, which influences the grapevine responses, grapes composition and wine quality. The Terroir studying and mapping are based on viticultural zoning procedures, obtained with different levels of know-how, at different spatial and temporal scales, empiricism and complexity in the description of involved bio-physical processes, and integrating or not the multidisciplinary nature of the terroir. The scientific understanding of the mechanisms ruling both the vineyard variability and the quality of grapes is one of the most important scientific focuses of terroir research. In fact, this know-how is crucial for supporting the analysis of climate change impacts on terroir resilience, identifying new promised lands for viticulture, and driving vineyard management toward a target oenological goal. In this contribution, an overview of the last findings in terroir studies and approaches will be shown with special attention to the terroir resilience analysis to climate change, facing the use and abuse of terroir concept and new technology able to support it and identifying the terroir zones.

Utilisation de données historiques pour caractériser le millésime en cours

Cet article propose la formalisation d’un modèle paramétrique pour représenter l’accumulation des sucres dans les baies de raisin durant la maturation. Le test de ce modèle sur des jeux de données réels a permis de valider l’approche proposée. Une seconde partie est axée sur l’adaptation de la méthode pour permettre la simulation du comportement du millésime en cours dès les premiers relevés de maturité. Ce travail possède de multiples applications dans le domaine de l’aide à la décision.

Effect of soil type on Sauvignon blanc and Cabernet-Sauvignon wine style at different localities in South Africa

The wine producing regions of South Africa are characterized by climatic diversity. The Coastal Region has a Mediterranean climate, with a mean annual rainfall of c.

New highlights of polyphenols from red wine to counteract ocular degenerative diseases

More recently, studies have shown that polyphenols could also prevent or improve vision in patients with ocular diseases and especially age-related macular degeneration (AMD) which is an eye disease characterized by damage to the central part of the retina, the macula, and that affects millions of people worldwide. Despite therapeutic advances thanks to the use of anti-vascular endothelial growth factor (VEGF), many resistance mechanisms have been found to accentuate the visual deficit.