GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Exploring the plasticity of the grapevine drought physiology

Exploring the plasticity of the grapevine drought physiology

Abstract

Context and purpose of the study ‐ Grapevine response to water deficit has been extensively studied. Nevertheless, debate still exists regarding some physiology adoption under drought, e.g. vulnerability to cavitation or iso‐anisohydric classification, among others. Discrepancies between published results, other than specific experimental setup, are attributed to environment/climate conditions and genotypes used. Indeed, the same genotype could exhibit a different phenotype under different climates (i.e. phenotypic plasticity). To date little information is available regarding the plasticity extent of certain traits related to drought response in grapevines. Here we present the results of a novel experiment, where a single genotype was exposed to similar water stress conditions in two different locations characterized by different climatic conditions.

Material and methods ‐ 90 plants of Grüner Veltliner grafted on 5BB rootstock were grown in pots during the 2016 season in Tulln (N‐E Austria). In January 2017 and after pruning, half of the vines were transported to Udine (N‐E Italy). In both locations, vines were re‐potted in 20L pots and filled with the same commercial potting media supplemented with 30% perlite. Then, pots were arranged in rows that were covered using a plastic film roof to prevent rain. Water was supplemented by drip irrigation and a set of vines were positioned under weighting mini‐lysimeters to measure ETc. Climate data was recorded by a weather station in each site. Vines were irrigated daily to 100% ETc until the imposition of water stress (WS) towards the end of June (pre‐veraison, E‐L 33). WS vines were daily irrigated 30% ETc of WW, ecophysiological data recorded frequently, and berry/leaf tissues sampled. The experiment was carried out for two consecutive vintages on the same vines.

Results ‐ Climatic variables were different between sites and deficit irrigation based on ETc yielded different results in terms of water stress intensity. In both years, well‐watered controls in Tulln never reached water potential below ‐0.7 MPa while those in Udine reached values as low as ‐1.2 MPa. Although the pot volumes and soil type used was the same, differences in atmospheric water demand determined different irrigation volumes between sites. Also, WS vines in Udine reached Ψstem values much lower than in Tulln, impacting differently as well some berry ripening parameters. Interestingly, the stomatal conductance (gs) response to Ψstem was different between sites: in Udine gs reached values <50 mmol H2O m‐2 s‐2 at Ψstem values much lower (‐1.2 MPa) than in Tulln (‐0.8 MPa), showing how gs/Ψ often used as indicators for iso‐anisohydric classification are influenced by environmental conditions. Finally, the WUEi was different among sites in 2018, determining a better performance of the vines in Tulln compared with those in Udine. 

DOI:

Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article

Authors

Jose Carlos HERRERA (1), Katja ŠUKLJE (2), Stefania SAVOI (1), Alberto CALDERAN (3), Lorena BUTINAR (2), Enrico PETERLUNGER (3), Giorgio ALBERTI (3), Paolo SIVILOTTI (3), Astrid FORNECK (1)

(1) Universität für Bondenkultur (BOKU), Institute of Viticulture and Pomology, Konrad‐Lorenz Str. 24, 3430 Tulln, Austria
(2) University of Nova Gorica, Wine Research Centre, Glavni trg 8, 5271 Vipava, Slovenia
(3) University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, via delle Scienze 206, 33100 Udine, Italy

Contact the author

Keywords

deficit irrigation, water relations, berry ripening

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Ozone to improve the implantation of Lachancea thermotolerans for improving pH in warm areas in wines with low SO2 levels

Una de las biotecnologías más potentes para disminuir el pH en vinos de zonas cálidas y en variedades de pH elevado es el uso de la levadura no-saccharomyces lachancea thermotolerans. Esta especie es capaz de formar ácido láctico a partir de azúcares, reduciendo al mismo tiempo ligeramente el grado alcohólico. Por lo tanto, mejora dos de los principales problemas de los vinos de regiones afectadas por el calentamiento global. El ácido láctico es un ácido orgánico con una buena integración sensorial en el sabor del vino, y también química y biológicamente estable durante el envejecimiento del vino.

Panorama des actions d’amélioration variétale face aux challenges d’aujourd’hui et de demain, le rôle de l’IFV

In April 2024, the French official catalog includes 449 grape varieties and rootstocks. In 10 years it has been enriched with 70 varieties. It is an indisputable marker of the interest of professionals in genetic resources of all origins and the expectations they have to prepare the viticulture of the future. The scientific community has now put all irons in the fire and is not neglecting any avenue of adaptation. The regular decline in the use of phytosanitary products and the already marked effects of climate change are the targets of varietal improvement.

Removal of white wine heat unstable proteins by using proteases and flash pasteurization-comparison with bentonites treatments

White wine protein haze can be prevented by removing the grape juice proteins, currently achieved by bentonite addition. To avoid wine volume loss and to minimizes aroma stripping, degrading haze-forming proteins in wine with proteases is a particularly interesting alternative to bentonite. In the present study, two fungal proteases treatments combined with different heating (50, 60, 72 °C) + refreshing steps, were applied on Gewürztraminer grape juice, and compared to bentonite treatments. The impact of these 19 treatments on the wine haze risks was determined by using two heat tests at 50 °C (heating during 30 to 120 min) and 80 °C (heating during 5 to 60 min). The protein contents and compositions were also estimated using the SDS-PAGE + densitometric integration techniques.

The challenge of viticultural landscapes

Le monde vitivinicole est de plus en plus concerné par la question paysagère : l’enjeu est de taille puisqu’il s’agit de la survie de l’image positive dont bénéficient les Appellations d’Origine Contrôlée. Les paysages sont composés d’éléments qui renvoient à des références socioculturelles fortes, susceptibles de modeler l’image d’un produit et d’en déterminer à notoriété et le prix. Dans un monde médiatisé comme le nôtre, le visuel construit l’arrière-plan des représentations mentales associées à toute marchandise ; et pour les aliments, produits de la terre, ce visuel est forcément paysager.

The combined effects of climate, soils, and deficit irrigation on yield and quality of Touriga Nacional under high atmospheric demand in the Douro Region

Global warming is one of the biggest environmental, social and economic threats in several viticultural regions. In the Douro Valley, changes are expected in the coming years, namely an increase in temperature and a decrease in precipitation. These changes are likely to have consequences for the production and quality of wine.
The aim of this study was to explore the effects of different soil characteristics combined with several deficit irrigation strategies, managed throughout ETc references and predawn leaf water potentials thresholds, on physiology, yield, and qualitative attributes on the Touriga Nacional variety under years of mild to severe water and heat stress.
The studies were conducted over seven years (2015 to 2021) in two plots of a commercial vineyard located at Quinta do Ataíde (Symington Family Estates) planted in 2011 and 2014 at 170 meters elevation, growing under three water regimes: non-irrigated (NI) and two deficit irrigation strategies (30% and 60% ETc) assessed weekly by Ψpd. The site has an annual rainfall below 500 mm, with high atmospheric demand. Climate data was collected from a weather station, located on site. Berry ripening was followed weekly for fruit analysis. At harvest, yield, vigour and pruning weight per vine were determined from 90 vines by treatment. Each season at veraison the NDVI Index was accessed by a drone. The soils physic-chemistry in the experimental blocs were analysed and grouped by SWHC. Delta C-13 analyses were also performed per treatment in two years.Irrigation had a positive effect on yield per vine, mostly due to an increase in berry and cluster weight, and fertility index through the years. A significant increase in sugar content, colour and phenols was observed with deficit irrigation in some years, but vine vigour related to soil characteristics had by far the greatest impact on quality.