GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Early detection project – make a GTD infection visible without disease symptoms

Early detection project – make a GTD infection visible without disease symptoms

Abstract

Context and purpose of the study ‐ The presence of grapevine trunk diseases (GTDs) related pathogens leads to severe economic losses in wine‐growing regions all over the world. GTDs cause foliar discoloration, stunted growth, decline, sectorial and/or central necrosis of the trunk wood, and dieback, while the quality and the quantity of the grapes and therefore the wine production is reduced. The disease management is challenging for vine‐growers since the responsible fungi colonize wood tissues (and are therefore inaccessible for conventional fungicides) and the related symptoms occur mostly after a long period of latency. The aims of this project were first to distinguish between healthy and infected plants before the symptoms appear and second to document the efficacy of BASF ´s Tessior®‐ System for wound protection under field conditions.

Material and methods ‐ Long term field trials were established between 2014 and 2015 in Germany, France, Greece, and Italy, where each year the pruning wounds are treated with Tessior®. In order to increase the infection pressure, some of the vineyards are artificially inoculated with spores of Phaeomoniellachlamydospora and Botryosphaeriaceae species. The presence of P. chlamydospora – a pathogen causing esca‐disease – and Botryosphaeriaceae species – causing Botryosphaeria dieback – in grapevines was determined with an optimized protocol. Samples were collected by drilling a 5 mm diameter hole in the spurs below a pruning wound which was closed then with a wound sealant. The wood chips were lyophilized and afterwards homogenized using TissueLyser II (Qiagen). Total genomic DNA was extracted from the grapevine samples and quantitative Real‐Time PCR using TaqMan probes was performed.

Results ‐ This protocol has been proved to be fast and accurate to quantify the DNA amount of GTDs related pathogens in grapevine wood. Furthermore, the efficacy of Tessior® wound protectant has been verified showing significant reduction of infection with P. chlamydospora and Botryosphaeriaceae species.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Szabina LENGYEL (1), Randall E. GOLD (2), Jochen FISCHER (1), Alexander YEMELIN (1), Eckhard THINES (1), Annett KÜHN (2)

(1) Institut für Biotechnologie und Wirkstoff-Forschung gGmbH, Erwin-Schrödinger-Straße 56, D-67663 Kaiserslautern, Germany
(2) BASF SE, Agricultural Center, Speyerer Straße 2, D-67117 Limburgerhof, Germany

Contact the author

Keywords

Grapevine, Phaeomoniellachlamydospora, Botryosphaeriaceae, quantitative Real‐Time PCR, TaqMan, Tessior®

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Integration of the AOC and terroir concepts by future professionals of the international wine sector

A survey has been conducted on 32 students and 25 former students of 28 nationalities of an international master course training executives of the international Wine sector.

A fine scale study of temperature variability in the Saint-Emilion area (Bordeaux, France)

As the quality and typicity of wine are influenced by the climate, it is essential to have a good knowledge of climate variability, especially with regard to temperature, which has a great impact on vine behavior and grape ripening.

Relations between soil characteristics and must and wine composition in different terroirs of Emilia Romagna (Italy)

The under-way zoning works of the Emilia viticulture have pointed out a huge variability of the features of the soils, which belong to this area.

Caratterizzazione varietale della CV. Vranac del Montenegro: primi risultati

Questo studio ha permesso di raccogliere alcune informazioni sul profilo chimico della cultivar Vranac coltivata in Montenegro. L’uva ha mostrato di raggiungere un buon accumulo zuccherino

Artificial intelligence (AI)-based protein modeling for the interpretation of grapevine genetic variants

Genetic variants known to produce single residue missense mutations have been associated with phenotypic traits of commercial interest in grapevine. This is the case of the K284N substitution in VviDXS1 associated with muscat aroma, or the R197L in VviAGL11 causing stenospermocarpic seedless grapes. The impact of such mutations on protein structure, stability, dynamics, interactions, or functional mechanism can be studied by computational methods, including our pyDock scoring, previously developed. For this, knowledge on the 3D structure of the protein and its complexes with other proteins and biomolecules is required, but such knowledge is not available for virtually none of the proteins and complexes in grapevine.