Macrowine 2021
IVES 9 IVES Conference Series 9 Effect of the winemaking technology on the phenolic compounds, foam parameters in sparklig wines

Effect of the winemaking technology on the phenolic compounds, foam parameters in sparklig wines

Abstract

Contribution Sparkling wines elaborated following the traditional method undergo a second fermentation in closed bottles of base wines, followed by aging of wines with lees for at least 9 months. Most of the sparkling wines elaborated are white and rosé ones, although the production of red ones is highly increasing. One of the initial problems in red sparkling wine processing is to obtain suitable base wines that should have moderate alcohol content and astringency and adequate color intensity; which is difficult to obtain when grapes must be harvested at low phenolic and industrial maturity stage. The low phenolic maturity degree in the red grapes makes essential to choose an adequate winemaking methodology to obtain the base wines because the extracted polyphenols will vary according the winemaking technique: carbonic maceration or destemmed-crushed grapes. Therefore, wines with different phenolic contents will be obtained, which may affect the foam quality of the sparkling wine. Therefore, this work studies the effect of the winemaking technique used to obtain the base wine on the color, polyphenolic compounds and the foam parameters HM (maximum height reached by foam after CO2 injection) and HS (foam stability height during CO2 injection). Grapes from Tempranillo variety were harvested in prematurity grapes. Then, two base red wines were manufactured using the carbonic maceration technique, and the traditional destemming and crushing technique. Therefore, two red sparkling wines were manufactured using the traditional method. Samples for analyses were taken from the base wines and 9 months of aging on yeast lees. The sparkling wines made from the destemmed-crushed grapes showed the highest values of HS proanthocyanidins, monomeric anthocyanins and color parameters after nine months of wine aging.

Acknowledgements
The authors thank the INIA and the Ministry of Economy and Competitiveness for financing this study through the projects RTA2009-00029-C02-01 and RTA2012-00092-C02-01 (with FEDER funds)

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Poster

Authors

Belén Ayestarán*, Ana Ruiz, Carlos González-Huerta, Leticia Martínez-Lapuente, Marta Bueno-Herrera, Mirian González-Lázaro, Pedro López de la Cuesta, Silvia Pérez-Magariño, Zenaida Guadalupe

*ICVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Novel analytical technologies for wine fingerprinting in and beyond the laboratory

For characterization, sensory designing and authentication rapid analytical technologies have become available. Some, like Proton Transfer Reaction Mass Spectrometry allow a rapid spectrum of the volatile compounds of wines. Combined with chemometrics wines can be characterized. The same approach can be used to calculate the results of virtual mixtures and allow formulation of constant quality blends. Other new techniques and portable devices based on spectroscopy allow measurements on production sites and in grocery stores, even for the smart consumer. We will present some examples of the application of these techniques for authentication of wines, both in the laboratory and on site.

Effects of post-fermentative cold maceration on chemical and sensory characteristics of Syrah, Cabernet Franc and Montepulciano wines

Astringency sensation decreases slowly during the aging of red wine. Complex reactions of condensation and precipitation of wine polyphenols are involved in this phenomenon. Wine composition and conditions of aging, such as temperature and oxygen availability, strongly influence evolution of the phenol matrix. Recently, a Post-Fermentative cold Maceration (PFM) technique was tested with the aim of accelerating reactions leading to the reduction of astringency and exploiting chemical compounds not extracted from the solid parts of grapes during the previous traditional maceration phase. To this purpose, an innovative maceration system was engineered and used to perform PFM trials on marc derived from vinification of different varieties of red grapes.

Grape metabolites, aroma precursors and the complexities of wine flavour

A critical aspect of wine quality from a consumer perspective is the overall impression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components. Grapes contribute some potent aroma compounds, together with a large pool of non-volatile precursors (e.g. glycoconjugates and amino acid conjugates). Aroma precursors can break down through chemical hydrolysis reactions, or through the action of yeast or enzymes, significantly changing the aroma profile of a wine during winemaking and storage. In addition, glycoconjugates of monoterpenes, norisoprenoids and volatile phenols, together with sulfur-conjugates in wine, provide a reservoir of additional flavour through the in-mouth release of volatiles which may be perceived retro-nasally.

Cover crops influence on soil N availability and grapevine N status, and its relationship with biogenic

The type of soil management, tillage versus cover crops, can modify the soil microbial activity, which causes the mineralization of organic N to NO3–N and, therefore, may change the soil NO3–N availability in vineyard. The soil NO3–N availability could influence the grapevine nutritional status and the grape amino acid composition. Amino acids are precursors of biogenic amines, compounds mainly formed during the malolactic fermentation. Biogenic amines have negative effects on consumer health and on the wine organoleptic quality. The objective was to study if the effect of conventional tillage and two different cover crops (leguminous versus gramineous) on grapevine N status, could relate to the wine biogenic amines composition.

Crown procyanidin: a new procyanidin sub-family with unusual cyclic skeleton in wine

Condensed tannins (also called proanthocyanidins) are a widely distributed throughout in plants kingdom and are one of the most important classes of secondary metabolites, in addition, they are part of the human diet. In wine, they are extracted during the winemaking process from grape skins and seeds. These compounds play an important role in red wine organoleptic characteristics such as color, bitterness and astringency. Condensed tannins in red wine are oligomers and polymers of flavan-3-ols unit such as catechin, epicatechin, epigallocatechin and epicatechin-3-O-gallate. The monomeric units can be linked among them with direct interflavanoid linkage or mediated by aldehydes.