GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 Organic and biodynamic viticulture affect soil quality and soil microbial diversity

Organic and biodynamic viticulture affect soil quality and soil microbial diversity

Abstract

Context and purpose of the study ‐ The production of organically grown crops developed exponentially in the last few decades based on consumer demands for healthy food as well as environmentally friendly farming practices. Current agricultural and environmental policies are reacting to these demands with initiatives limiting the use of synthetic pesticides and thus promoting organic farming. In viticulture, 316,000 hectares of grapes are grown organically, which is a 4.5 % share of the global grape growing area. The effects of organic and biodynamic viticulture on soil quality and soil microbial diversity in comparison to conventional or integrated viticulture are very controversially discussed. The aim of this review is to summarize the outcomes of scientific trials performed on organic and biodynamic viticulture worldwide and hence to characterize the effects of the respective management systems on soil properties and soil microbial diversity.

Material and methods ‐ Literature searches of peer‐reviewed published literature were conducted to find studies investigating organic and/or biodynamic viticulture which deal with soil properties and biodiversity of the soil microbiota. Only field trials that used replicates of management treatments with representative plots or studies that used a representative number of samples were included in the review in order to avoid bias in individual studies.

Results – For describing the effect of organic and biodynamic viticulture on soil quality and microbial soil life, authors concentrated on reporting the effects of the respective management systems on biological activity of the soil, macronutrient supply, copper levels in the soil and soil microbial diversity. In several studies an increase of the biological activity of the soil under organic management is reported. Biodynamic and organic vineyards show a higher cumulative soil respiration, a higher content of microbial biomass C and a higher ratio of microbial biomass C to organic C, especially after conversion. The contents of organic C, total N, P and S as well as Cu do not differ among treatments in most of the trials. Fungal endophyte colonization of the roots of grapevines under organic management, species richness, diversity indices and arbuscular mycorrhizal spore abundance were higher compared to conventional management. No difference in fungal species richness was assessed in soils of biodynamically and conventionally managed vineyards in New Zealand. In contrast, management systems differed in the types of species present and in the abundance of the single species. These results are supported by a recent study from Germany, where a fungal community shift under organic viticulture was observed without affecting fungal species richness. Bacterial biodiversity was increased in topsoil under organic management compared to conventional viticulture. The links between soil microbial diversity, biological activity of the soil and macronutrient supply will be discussed. Their importance for organic and biodynamic viticulture will be discussed.

DOI:

Publication date: June 22, 2020

Issue: GiESCO 2019

Type: Article

Authors

Johanna DÖRING (1), Maximilian HENDGEN (1), Cassandra COLLINS (2), Georg MEIßNER (1), Matthias FRIEDEL (1), Manfred STOLL (1), Randolf KAUER (1)

(1) Hochschule Geisenheim University, Von-Lade-Str. 1, D-65366 Geisenheim, Germany
(2) University of Adelaïde, Australia

Contact the author

Keywords

Grapevine, biological activity of the soil, macronutrients, copper, soil microbiota

Tags

GiESCO 2019 | IVES Conference Series

Citation

Related articles…

Long-term vineyard sustainability index

The impact of viticulture on soil can be determined by comparing the biophysical properties that represent soil health at a particular site and depth with those same properties in soil considered to represent the ‘pre-vineyard’ state (the headland). Information gathered by this method shows the changes in soil properties following the change to viticulture depend on individual vineyard management and environment.

Building new temperature indexes for a local understanding of grapevine physiology

Aim: Temperature corresponds to one of the main terroir factors influencing grapevine physiology, primarily evidenced by its impact on phenology. Numerous studies have aimed at expressing time with thermal indices such as growing degree days (GDD) and have thus enabled a better modelling of grapevine responses to temperature. However, some works have highlighted the need to adapt

The dynamics of δ13C and δ18O in musts during berries development

Aim: Many processes or reactions that occur in plants involved isotopic discrimination. Water availability, for example, affects the isotopic ratio of carbon (δ13C) and oxygen (δ18O). In viticulture, δ13C is used in experiments related to water relations and irrigation in vineyards. δ18O is used much less but it could be a good complement to δ13C. The aim of this study was to generate knowledge on how these isotopic ratios, measured in musts, could help to better understand the water behavior of grape varieties. 

Vineyard soils characterization and its influence on the grape quality of cv. Carmenère in the Maipo Valley, Chile

Produced since 1998, the De Martino Single Vineyard Carmenère is the first Carmenère Icon wine of Chile. The grapes are coming form a plot of 11 ha in Isla de Maipo, where the technicians of the winery have developed knowledge of their work, resulting in 3 levels of quality of the grapes.

Grapesoil: An integrated model to simulate water and nitrogen fluxes in diversified vineyards

Cover crops in vineyards bring numerous benefits, including enhanced soil health, improved water infiltration, and potential pest reduction. However, they also present risks, such as reduced vine vigour and yield due to competition for water and nutrients (Celette & Gary 2013, Garcia et al., 2018).