Macrowine 2021
IVES 9 IVES Conference Series 9 Sensory definition of green aroma concept in red French wines. Evidence for the contribution of novel volatile markers

Sensory definition of green aroma concept in red French wines. Evidence for the contribution of novel volatile markers

Abstract

The aromatic complexity of a wine results from the perception of the association of volatile molecules and each aroma can be categorized into different families. The “green” aromas family in red wines has retained our attention by its close link with the fruity perception. In that study, the “green” olfactory concept of red wines was considered through a strategy combining both sensory analysis and hyphenated chromatographic techniques including HPLC and MDGC (Multidimensional Gas Chromatography). The aromatic space of this concept was specified by lexical generation through a free association task on 22 selected wines by a panel of wine experts. Then, 70 French red wines were scored on the basis of the intensity of their “green” and “fruity” attributes. The relationship between these two families and chemical markers (2-methoxy-3-isobutyl, 3-isopropyl and 3-sec-butyl pyrazines and C6 alcohol compounds) was assessed. Strong anti-correlation between “green” and “fruity” was demonstrated but no significant correlations could be established with known molecular markers associated with fresh green characters. So, the contribution of other aromatic compounds was formulated in particular with the level of grape maturation. Microvinifications of Cabernet-Sauvignon grapes from Medoc vineyard harvested at two ripeness stages were done during 2014 and 2015 vintages. The so-obtained wines were extracted with organic solvents and the concentrated extracts were fractioned by semi-preparative HPLC. Among fifty fractions collected, one was particularly highlighted for its green aromas. The sensory impact of this fraction was first confirmed by omission and reconstitution tests. To determine the molecules responsible for green flavour of this fraction, GC-O (Gas Chromatography coupled with Olfactometry) and MDGC-O/Time-Of-Flight-MS were considered. 2-Methoxy-3-isobutyl-pyrazine well known as IBMP (bell pepper descriptor) was identified as one of the compounds responsible for the aroma of this fraction with two other odoriferous compounds presenting a green aroma. One belongs to terpene family, 1,8-cineole (herbs, fresh and eucalyptus descriptors), usually associated in wines with eucalyptus trees contamination. 1,8-cineole was definitively evidenced as a Vitis vinifera compound with concentrations assayed in wines from unripe grapes and other wines from Carmenet family close or higher to olfactory detection threshold (1 µg/l). 1,8-cineole concentrations were shown to decrease like IBMP during ripeness. The other compound was identified as methyl salicylate (fresh, leafy and wintergreen descriptors), a derivative of salicylic acid, sometimes quantified in wine samples at concentrations much higher than its detection threshold (40 µg/l). Supplementation tests at assayed concentrations in red wines for these two compounds exhibited a sensory impact on green aromas and a synergic effect was noticed with IBMP on the enhancement of the green flavour in red wines.

Publication date: May 17, 2024

Issue: Macrowine 2016

Type: Article

Authors

Xavier Poitou*, Philippe Darriet

*ISVV

Contact the author

Tags

IVES Conference Series | Macrowine | Macrowine 2016

Citation

Related articles…

Reaction Mechanisms of Copper and Iron with Hydrogen Sulfide and Thiols in Model Wine

Fermentation derived sulfidic off-odors due to hydrogen sulfide (H2S) and low molecular weight thiols are commonly encountered in wine production and removed by Cu(II) fining. However, the mechanism underlying Cu(II) fining remains poorly understood, and generally results in increased Cu concentration that lead to deleterious reactions in finished wine. The present study describes a mechanistic investigation of the iron and copper mediated reaction of H2S, cysteine, 3-sulfanylhexan-1-ol, and 6-sulfanylhexan-1-ol with oxygen. The concentrations of H2S, thiols, oxygen, and acetaldehyde were monitored over time. It was found that Cu(II) was rapidly reduced by both H2S and thiols to Cu(I).

Extraction of polyphenols from grape marc by supercritical fluid extraction (SFE) and evaluation of their ‘bioavailability’ as dietary supplements

In the winemaking process, several compounds that remain in the grape skins and seeds after the fermentation stage are bioactive-compounds (substances with potential beneficial effects on health) that can be extracted in order to recovery valuable substances with a high commercial value for the cosmetic, food (nutraceuticals) and pharmaceutical industries. The skins contain significant amounts of bioactive substances such as tannins (16-27%) and other polyphenolic compounds (2-6.5%) in particular, catechins, anthocyanins, proanthocyanins, quercetin , ellagic acid and resveratrol.

Impact of non-fruity compounds on red wines fruity aromatic expression: the role of higher alcohols

A part, at least, of the fruity aroma of red wines is the consequence of perceptive interactions between various aromatic compounds, particularly ethyl esters and acetates, which may contribute to the perception of fruity aromas, specifically thanks to synergistic effects.1,2 The question of the indirect impact of non-fruity compounds on this particular aromatic expression has not yet been widely investigated. Among these compounds higher alcohols (HA) represent the main group, from a quantitative standpoint, of volatiles in many alcoholic beverages. Moreover, some bibliographic data suggested their contribution to the aromatic complexity by either increasing or masking flavors of wine, depending of their concentrations.

Accumulation of polyphenols in Barbera and Nebbiolo leaves during the vegetative season

Grapevine berries produce thousands of secondary metabolites of diverse chemical nature that have been largely detailed in the past due to their importance for defining wine quality. The wide Vitis vinifera diversity, resulting in thousands of different varieties well detailed in many studies regarding berries, is still not investigated in vegetative organs, leaves in particular. Deepening knowledge related to this aspect could be of great interest for many reasons (for example the possibility of using leaf extract for pharmaceutical, cosmetic and nutrition purposes) but, above all, for understanding the susceptibility of different grapevine varieties to pathogens.

Sensory and nephelometric analysis of tannin fractions obtained by ultrafiltration of red wines

The assessment of red wine mouthfeel relies primarily on the sensory description of its tannic properties. This evaluation could be improved by gaining a better understanding of the physicochemical properties of these tannins. Hence, the objectives of the present study were threefold: (1) to gain an insight into the sensory properties of subpopulations of proanthocyanidic tannins of different molecular sizes obtained through several ultrafiltration steps, (2) to quantify the kinetics of haze formation of these proanthocyanidic tannins in a dynamic polyvinylpyrrolidone (PVP) precipitation test, (3) to determine whether a correlation exists between the sensory and the precipitation data.