terclim by ICS banner
IVES 9 IVES Conference Series 9 Autochthonous non-Saccharomyces extra-cellular metabolism of tryptophan, tyrosine, and phenylalanine

Autochthonous non-Saccharomyces extra-cellular metabolism of tryptophan, tyrosine, and phenylalanine

Abstract

Amino acids are crucial nitrogen sources in yeast metabolism, influencing both biomass production and fermentation rate. The breakdown byproducts of amino acids contribute to the aroma of the wine and wine’s health benefit compounds. This study focused on the yeast’s extracellular metabolic profile of tryptophan, tyrosine, and phenylalanine belonging to the group of aromatic amino acids in experimental Maraština wines. Alcoholic fermentations were conducted on sterile grape Maraština must using seven autochthonous non-Saccharomycesyeasts in sequential fermentation with commercial Saccharomyces cerevisiae. Trials were performed with isolates Metschnikowia pulcherrima K-6, Metschnikowia chyrsoperlae K-11, Metschnikowia sinensis/shanxiensis P-7, Lachancea thermotolerans P-25, Pichia kluyveri Z-3, Hanseniaspora uvarum Z-7, and Hanseniaspora guillermondii N-29, each in triplicate. The control treatment involved commercial strains L. thermotolerans, M. pulcherrima, and S. cerevisiae. A UHPLC-QqQ-MS/MS method was employed to monitor 37 metabolites, with 26 detected in the extracellular extracts produced by yeasts. The most significant changes in the concentration of identified compounds occurred in M. sinensis/shanxiensis/S. cerevisiae and H. guillermondii/S. cerevisiae ferments. M. sinensis/shanxiensiswith S. cerevisiae produced higher amounts of N-acetyl derivatives of tryptophan and phenylalanine, as well as xanthurenic acid and tyramine. Wines produced by H. guillermondii in sequential fermentation with S. cerevisiae had the highest concentration of L-kynurenine and 3-hydroxy anthranilic acid. These findings contribute to our understanding of how autochthonous non-Saccharomyces yeasts contribute to the aroma profile of wines, providing new insights into biotechnological tools for the production of wine starter cultures.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Ana Boban1*, Urska Vrhovsek2, Andrea Anesi2, Vesna Milanović3, Irena Budić-Leto1

1 Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia
2 Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy
3 Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy

Contact the author*

Keywords

autochthonous yeast, wine, metabolism, non-Saccharomyces, starter culture

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Valorisation of nutraceutical and health-related properties of wine-grapes of Emilia-Romagna Italian region

In this work, results about the composition in polyphenols and polyamines in important wine-grape cultivars from the Emilia-Romagna region are presented. Spectrophotometric and HPLC analyses suggest that especially coloured berries are particularly rich of antioxidant species (stilbenes and catechins). Potential allergenic capability of biogenic amines was also characterized.

Diversity of leaf functioning under water deficit in a large grapevine panel: high throughput phenotyping and genetic analyses

Water resource is a major limiting factor impacted by climate change that threatens grapevine production and quality. Understanding the ecophysiological mechanisms involved in the response to water deficit is crucial to select new varieties more drought tolerant. A major bottleneck that hampers such advances is the lack of methods for measuring fine functioning traits on thousands of plants as required for genetic analyses. This study aimed at investigating how water deficit affects the trade-off between carbon gains and water losses in a large panel representative of the Vitis vinifera genetic diversity. 250 genotypes were grown under 3 watering scenarios (well-watered, moderate and severe water deficit) in a high-throughput phenotyping platform.

Influence of grapes origin and yeast strain on aroma profile of corvina and corvinone dry passito wines

Valpolicella is a wine region characterized by a wide use of the technology of grape drying for the production of two red passito wines, recognized as PDOs, “Recioto della Valpolicella” and the most famous “Amarone della Valpolicella”. Geographical origin of the grapes can influence wine composition by grape chemical composition yeast behaviour during fermentation. This study investigates the impact of different commercial yeast strains on aroma profiles of wines produced with withered grapes of different origins. In addition, the influence of spontaneous fermentation is also considered. METHODS: Experimental red wines were produced with a standard winemaking protocol with withered Corvina and Corvinone grapes obtained from two different geographical areas within the Valpolicella region. Fermentations were carried out with four different commercial yeasts plus a spontaneous fermentation. Wines were analysed by means of SPE- and SPME-GC-MS techniques and sensory analysis (sorting task).

Zonage vitivinicole: recherches et considérations initiales sur une proposition de “nouvelle” méthodologie d'”évaluation de la qualité” du produit tel qu’élément base pour le zonage aussi

Si on part de l’introduction que l’activité vitivinicole maintenant plus que jamais doit être une activité d’entreprenariat introduite de mieux en mieux sur le territoire et donc effectuée pour rendre maximal le Profit

Texas terroir: gis characterization of the texas high plains ava

The Texas High Plains AVA is one of eight officially recognized wine regions in Texas, established in 1993. Six local wineries, including the second-largest in Texas, are supported by approximately 50 vineyards, which are also major suppliers of grapes to Texas wineries outside the region.