terclim by ICS banner
IVES 9 IVES Conference Series 9 Autochthonous non-Saccharomyces extra-cellular metabolism of tryptophan, tyrosine, and phenylalanine

Autochthonous non-Saccharomyces extra-cellular metabolism of tryptophan, tyrosine, and phenylalanine

Abstract

Amino acids are crucial nitrogen sources in yeast metabolism, influencing both biomass production and fermentation rate. The breakdown byproducts of amino acids contribute to the aroma of the wine and wine’s health benefit compounds. This study focused on the yeast’s extracellular metabolic profile of tryptophan, tyrosine, and phenylalanine belonging to the group of aromatic amino acids in experimental Maraština wines. Alcoholic fermentations were conducted on sterile grape Maraština must using seven autochthonous non-Saccharomycesyeasts in sequential fermentation with commercial Saccharomyces cerevisiae. Trials were performed with isolates Metschnikowia pulcherrima K-6, Metschnikowia chyrsoperlae K-11, Metschnikowia sinensis/shanxiensis P-7, Lachancea thermotolerans P-25, Pichia kluyveri Z-3, Hanseniaspora uvarum Z-7, and Hanseniaspora guillermondii N-29, each in triplicate. The control treatment involved commercial strains L. thermotolerans, M. pulcherrima, and S. cerevisiae. A UHPLC-QqQ-MS/MS method was employed to monitor 37 metabolites, with 26 detected in the extracellular extracts produced by yeasts. The most significant changes in the concentration of identified compounds occurred in M. sinensis/shanxiensis/S. cerevisiae and H. guillermondii/S. cerevisiae ferments. M. sinensis/shanxiensiswith S. cerevisiae produced higher amounts of N-acetyl derivatives of tryptophan and phenylalanine, as well as xanthurenic acid and tyramine. Wines produced by H. guillermondii in sequential fermentation with S. cerevisiae had the highest concentration of L-kynurenine and 3-hydroxy anthranilic acid. These findings contribute to our understanding of how autochthonous non-Saccharomyces yeasts contribute to the aroma profile of wines, providing new insights into biotechnological tools for the production of wine starter cultures.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Ana Boban1*, Urska Vrhovsek2, Andrea Anesi2, Vesna Milanović3, Irena Budić-Leto1

1 Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia
2 Metabolomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, 38098 San Michele all’Adige, Italy
3 Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy

Contact the author*

Keywords

autochthonous yeast, wine, metabolism, non-Saccharomyces, starter culture

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Understanding sweetness of dry wines: first evidence of astilbin isomers in red wines and quantitation in a one-century range of vintages

The gustatory balance of wines relies on sweetness, bitterness and sourness. In dry wines, sweetness does not result from the presence of residual sugar as in sweet wines, but is due to other non-volatile compounds. Such taste-active compounds are released during winemaking, by grapes, yeasts or oak wood and belong numerous chemical families [1]. Beyond this diversity, stereochemistry of molecules can also influence their sensory properties [2]. However, the molecular determinants associated with this taste have only been partially elucidated. Astilbin (2R, 3R) was recently reported to contribute to wine sweetness [3]. As its aglycon contains two stereogenic centers, three other stereoisomers may be present: neoisoastilbin (2S, 3R), isoastilbin (2R, 3S), and neoastilbin (2S, 3S). These compounds have already been observed in natural products, but never in wine. This work aimed at assaying their presence for the first time in wines as well as their taste properties.The isomers were synthesized from astilbin and purified by semi-preparative HPLC.

Coming of age: do old vines actually produce berries with higher enological potential than young vines? A case study on the Riesling cultivar

Consumers and the wine industry tend to agree on the ability of old vines to produce fruit that allows the production of wine of superior character. However, despite past and ongoing research, objective evidence of this point of view is still debated and studies on robust, specifically dedicated plots are scarce. Thus the impact of grapevine age on berry oenological potential and wine quality remains an open question. To try to objectively address the issue, a unique vineyard was established at Geisenheim University, Germany. It was planted in 1971 with cv. Riesling grafted on 5C Teleki. In 1995 and 2012, several rows were uprooted and replanted with the same rootstock/scion combination, resulting in a vineyard with alternate rows of identical plant material, but with different planting dates. The parameters of technical maturity and grape composition at harvest were analyzed during seasons 2014, 2015, 2016 and 2017 combining HPLC and enzymatic methods. Separate micro-vinifications were made for each age group and wine composition was analyzed by a combination of 1H-NMR and SPE-GC-MS.

The future of DMS precursors during alcoholic fermentation: impact of yeast assimilable nitrogen levels on the contents of DMSp in young wines

Some red wines develop a “bouquet” during ageing. This complex aroma is linked to quality by wine tasters1. The presence of dimethylsulfide (DMS) in those wines is implicated

Effet terroir et arômes des muscats

L’étude porte sur trois terroirs du Roussillon, classés dans l’A.O.C. Muscat de Rivesaltes et concerne les 2 cépages de cette appellation : le muscat à petits grains et le muscat d’Alexandrie. Elle a pour objectif de connaître pour un terroir donné le meilleur choix de cépage.

The use of local knowledge relating to vineyard performance to identify viticultural terroirs in Stellenbosch and surrounds

A terroir represents grouping of homogenous environmental units, or natural terroir units, based on the typicality of the products obtained. Identification and characterisation of terroirs depends on knowledge of environmental parameters, the functioning of the grapevine and characteristics of the final product, which must be placed in a spatial context.