terclim by ICS banner
IVES 9 IVES Conference Series 9 Identifying physiological and genetic bases of grapevine adaptation to climate change with maintained quality: Genome diversity as a driver for phenotypic plasticity  (‘PlastiVigne’ project)

Identifying physiological and genetic bases of grapevine adaptation to climate change with maintained quality: Genome diversity as a driver for phenotypic plasticity  (‘PlastiVigne’ project)

Abstract

In the face of climate change, new grapevine varieties will have to show an adaptive  phenotypic plasticity to maintain production with erratic water resources, and still ensure the quality of the final product. Their selection requires a better knowledge of the genetic basis of those traits and of the elementary processes involved in their variability. ‘PlastiVigne’, an emblematic project of the Vinid’Occ key challenge, funded by the Occitanie Region (France), tackles this issue with innovative genomic and physiological tools implemented on a unique panel of grape genetic resources representing the genetic diversity of Vitis vinifera. A graph-pangenome is developed from a representative set of high-quality genomes to study the extent and impact of structural genome variations and chromosomal rearrangements in the rapid adaptation capacity of grapevine. We will characterize structural variants potentially related to differential expression or alternative spicing of candidate genes for stress tolerance in individual grape berries. Markers derived from structural variants mapped on the pangenome, as well as new sets of SNP markers, will allow the identification of genomic regions associated to leaf water and carbon balance under several water stress regimes, its  plasticity, adaptation traits like phenology, genomic vulnerability, and to some traits related to the aromatic potential of grape berries. They represent new tools for grape breeding. More detailed functional analysis of leaf and berry phenotypic plasticity in response to water deficit will be then conducted, on a subset of contrasted varieties. We will present the project strategy and highlight a few preliminary results.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Poster

Authors

Dominique This 1, Roberto Bacilieri1, Eva Coindre1,4, Olivia di Valentin2, Baptiste Pierre1, Flora Tavernier1, Thomas Baerenzung dit Baron 3, Gautier Sarah1, Vincent Segura 1, Agnès Doligez1, Charles Romieu1, Thierry Lacombe1, Sylvain Santoni1, Christine Tollon-Cordet1, Audrey Weber1, Aude Coupel-Ledru 4, Thierry Simonneau4, Benoit Pallas4, Gaelle Rolland4, Stéphane Berthezène4, Romain Boulord4, Julien Pirrello2, Farid Regad2, Olivier Geffroy 3, Olivier Rodrigues3, Aurélie Roland5, Somaya Sachot5, Nicolas Saurin6, Emmanuelle Garcia-Adrados6, Cécile Marchal7, Sandrine Dedet7, Anne Mocoeur7, Alban Jacques3, Patrice This1*

1 AGAP Institute, Univ Montpellier – CIRAD – INRAE, Institut Agro, F-34398 Montpellier, France
2 LRSV,  Université de Toulouse – INP – Purpan, 31076 Toulouse, France
3 PPGV, Université de Toulouse -, INP – Purpan, 31076 Toulouse, France
4 LEPSE, Univ Montpellier – INRAE – Institut Agro, Montpellier, France
5 SPO, INRAE – Institut Agro -University Montpellier, 34060 Montpellier, France
6 Domaine de Pech Rouge, Univ Montpellier – INRAE, F-11430 Gruissan, France
7 Domaine de Vassal, INRAe, route de Sète, 34340 Marseillan, France

Contact the author*

Keywords

Vitis vinifera, plasticity, pangenome, water/carbon balance, aroma

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Monitoring of Pesticide Residues from Vine to Wine

Those previous years, pesticides are often brought to the forefront by media. Questions arose about their toxicity for growers and consumers. Even if a downward trend is underway, the use of pesticides is required to ensure steady quality and quantity of harvests. A large number of active ingredients are authorized but regarding viticulture, mainly insecticides and fungicides are applied, to control pests and diseases and to increase crop yield. Some phytosanitary products, principally fungicides, applied close to the harvest date may frequently be detected in wines.

Effects of progeny in the modulation of the response to water stress in isohydric and anisohydric varieties

Each grapevine variety has a specific water use regulation response under drought, and it is still unclear whether this regulation results from innate genotypic behavior (iso- and anisohydric), or is a response to environmental factors, namely recurrent water stress priming effects. In the present work, we explored the influence of the field-grown genotypes’ drought memory in the drought-response phenotype of their vegetative progenies, in Trincadeira (isohydric) and Castelão (anisohydric) varieties under a drought event followed by recovery in a glasshouse. Cuttings from both cultivars subjected to full irrigation (FI) and non-irrigation (NI) treatments for 5 consecutive years were used.

Effects of abscisic acid treatment on Vitis vinifera L. Savvatiano and Mouchtaro grapes and wine characteristics

Grapes development is determined by grape cultivar and vineyard climatic conditions and consequently affecting the phenolic and aroma on grapes and wines. Abscisic Acid (ABA) plays a key role in the promotion of fruit ripening and fruit anthocyanin content. Herein, we report the impact of ABA to grape ripening and wine quality.

Enhancing table grape production: addressing challenges and opportunities for sustainability and quality improvement

Table grapes, being consumed as fresh, raisins, and transformed products are among the most appreciated fruits worldwide. Its popularity is increasing also due to its organoleptic and nutritional qualities that meet the consumers’ interest in healthier foods. Recent data from International Organization of Vine and Wine (OIV) revealed that table grape production has doubled in the last twenty years, and varietal availability has increased thanks to the several breeding programs.
To maintain the socio-economic impact of this sector, new challenges need to be addressed.

The effect of ozonated water treatment on the metabolic profile and resistance of vines to Downy and powdery mildew 

Ozone is a potent oxidizing compound that quickly decomposes into oxygen without residues. Previous works reported that ozone is not only a disinfectant that directly harms the pathogens of the vine but also activates systemic defense systems in the plant by activating oxidative stress. We assume these systemic defense mechanisms are essential to the vines’ resistance to downy and powdery mildew (Plasmopara viticola & Erysiphe necator, respectively). The goals of the research are to examine the effect of spraying with ozone water on the plant’s resistance against the mentioned pathogens as well as to characterize the metabolic profile of the plants treated with ozone as well as physiological characteristics in the vines such as the level of Photosynthesis and crop yield. Vines in the vineyard sprayed with ozone water at concentrations of 2 and 4 PPM weekly and biweekly, untreated control & conventional spray. Leaves were taken from vines 2,4,7,9 and 11 days after exposure to ozone and inoculated with the pathogens.