terclim by ICS banner
IVES 9 IVES Conference Series 9 From protein-centered to gene-centered approaches to investigate DNA-protein interactions in grapevine

From protein-centered to gene-centered approaches to investigate DNA-protein interactions in grapevine

Abstract

DNA-binding proteins play a pivotal role in critical cellular processes such as DNA replication, transcription, recombination, repair, and other essential activities. Consequently, investigating the interactions between DNA and proteins is of paramount importance to gain insights into these fundamental cellular mechanisms. Several methodologies have been devised to uncover DNA-protein interactions, which can be broadly categorized into two approaches. The “protein-centered” approach focuses on identifying the DNA sequences bound by a specific transcription factor or a set of TFs. Techniques falling within this category include chromatin immunoprecipitation, and protein-binding microarrays. The “gene-centered” approach entails using one or more DNA sequences as bait to explore the TFs that bind to these specific DNA elements. Methods belonging to this approach encompass yeast one-hybrid (Y1H), PICh, and Reverse ChIP. Both methodologies offer distinct advantages and face limitations, largely stemming from challenges related to complexity, efficiency, and specificity. With the emergence of next-generation sequencing (NGS) protocols and the CRISPR/Cas system, new avenues for investigating trans-cis interactions in organisms have opened. In our research focusing on grapevines, we discuss advancements in both protein- and gene-centered approaches. Firstly, we present the implementation of a DNA Affinity Purification (DAP-seq) protocol in grapevines to explore the cistrome associated with various TFs from the WRKY and MYB families. Secondly, we address the challenge of developing an innovative gene-centered approach utilizing a CRISPR/Cas system for in-situ purification of regulatory elements. This approach aims not only to identify proteins associated with specific genomic regions but also to elucidate long-range DNA interactions.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Aurélien Devillars1, Gabriele Magon1, Silvia Farinati1, Valerio Licursi2, Gabriele Magris3, Sara Zenoni3, Bhanu Prakash Potlapalli4, Andreas Houben4, Alessandro Vannozzi1*

1 Department of Agriculture Food Natural Resources Animals and Environment, University of Padova, Agripolis, Legnaro, Italy
2 Institute of Molecular Biology and Pathology, CNR c/o Department of Biology and Biotechnologies, Sapienza University of Rome, Via degli Apuli, 4 – 00185 Rome
3 University of Udine, via Delle Scienze 206
4 Department of Biotechnologies, University of Verona, Strada le Grazie 1, Verona (VR), Italy
4 Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany

Contact the author*

Keywords

DAP-seq, Grapevine, Gene Regulation, CRISPR-Cas9, Protoplasts

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

A comparative analysis of regions worldwide with Pinot noir

This study examines the growing season climates of selected wine regions worldwide that have significant areas under Pinot noir.

Nitrogen uptake, translocation and YAN in berries upon water deficit in grapevines with contrasting stomatal sensitivity

Nitrogen (N2) is critical in grape berries, especially in organic wine making. After intake, N2 follows various metabolic and allocation routes and, from veraison, partly reallocates into berries. Water deficit affects the N2 nutrition due to a poor diffusion in soil solution and vascular mobilisation. Also, affects photosynthesis and the energy needed for metabolism, whose extent would depend on the stomatal sensitivity of the plant. We have assessed the effect of a moderate water deficit from pea size, in 3 years old field grown potted plants of Chardonnay (CH) and Cabernet Sauvignon (CS), differing in stomatal sensitivity, on the N2 status of plant parts. Water deficit reduced photosynthesis, leaf area and fresh and dry plant mass along the season, but up to a higher extent in CS.

Improving stilbenes in vitis Labrusca L. Grapes through methyl jasmonate applications

Grapes (Vitis sp.) are considered a major source of phenolic compounds such as flavonols, anthocyanins and stilbenes. Studies related to the beneficial effects of these compounds on health have encouraged research aimed at increasing their concentration in fruits. On this behalf, several plant growth regulators such as jasmonic acid and its volatile ester, methyl-jasmonate (MeJa), have demonstrated promising results in many fruits. However, Brazilian subtropical climate might interfere on treatment response. The present study aims to evaluate the application of MeJa in the pre-harvest period in Concord and Isabel Precoce grapes (Vitis labrusca L.).

Early development of potential wine styles for PIWI varieties in grapevine breeding

In a framework in which climate change is increasingly recognized as a critical global challenge, traditional viticulture must be reconsidered in order to provide better solutions for future needs [1].

Cover crops influence on soil N availability and grapevine N status, and its relationship with biogenic

The type of soil management, tillage versus cover crops, can modify the soil microbial activity, which causes the mineralization of organic N to NO3–N and, therefore, may change the soil NO3–N availability in vineyard. The soil NO3–N availability could influence the grapevine nutritional status and the grape amino acid composition. Amino acids are precursors of biogenic amines, compounds mainly formed during the malolactic fermentation. Biogenic amines have negative effects on consumer health and on the wine organoleptic quality. The objective was to study if the effect of conventional tillage and two different cover crops (leguminous versus gramineous) on grapevine N status, could relate to the wine biogenic amines composition.