terclim by ICS banner
IVES 9 IVES Conference Series 9 DNA-Free genome editing confers disease resistance in grapevine

DNA-Free genome editing confers disease resistance in grapevine

Abstract

Grapevine (Vitis Vinifera L.), one of the most important cultivated fruit crops, is facing significant challenges due to climate change. Specifically, increasing temperatures negatively impact the physiological traits and disrupt plant phenology. Additionally, increased virulence in pathogen attacks and pests leads to significant yield loss, requiring widespread application of plant protection products. Traditional agronomic practices offer only partial mitigation, requiring the development of precise and effective intervention strategies. The economic worth of viticulture has prompted continuous efforts in grapevine genetic improvement programs, traditionally involving conventional breeding and clonal selection that, however, are complex and time-consuming approaches. Instead, the advent of New Breeding Techniques, especially genome editing via the CRISPR/Cas9 system, presents a promising avenue for the development of tools suitable to mitigate the current viticulture challenges, including fungal diseases. We report the application of a DNA-free genome editing approach to induce targeted mutations in the VviMLO17, a gene associated with powdery mildew susceptibility in grapevine. CRISPR/Cas9 ribonucleoparticles were introduced into protoplasts isolated from embryogenic calli. Through protoplast regeneration, a homozygous edited grapevine plant mutated in the VviMLO17 gene was obtained. This mutation confers resistance to Erysiphe necator, as evidenced by phenotypic analyses that demonstrated a reduced susceptibility to pathogen attack. The success of DNA-free CRISPR/Cas9 application for the improvement of target traits establishes a foundation for promoting viticulture sustainability yet preserving the identity of the grapevine cultivars. This advancement aligns with market and legislative demands, paving the way for a resilient and environmentally conscious winegrowing system.

DOI:

Publication date: June 13, 2024

Issue: Open GPB 2024

Type: Article

Authors

Marianna Fasoli1, Edoardo Bertini2, Erica D’Incà2, Luca Cattaneo1, Stefania Zattoni1, Sara Lissandrini1, Clarissa Ciffolillo1, Annalisa Polverari1, Giovanni Battista Tornielli1,3, Sara Zenoni1*

1 Department of Biotechnology, University of Verona, Verona, Italy
2 EdiVite S.r.l., San Pietro Viminario, Padua, Italy
3 Current address: Department of Agronomy, Food, Natural Resources, Animals and the Environment., University of Padua, Padua, Italy

Contact the author*

Keywords

genome editing DNA-free, CRISPR/Cas9 system, protoplast regeneration, powdery mildew resistance, sustainable viticulture

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Collective management for landscape and biodiversity conservation in viticulture: The Life + BioDiVine project

Environmental awareness is globally rising among scientific community, politicians and general public. Biodiversity conservation is becoming a concern for farmers

Everything else, it’s work ”Socio-cultural dimensions of terroir among Bordeaux winemakers

In 2010, the OIV adopted a resolution that defines ‘terroir’. The OIV definition understands terroir as the result of the interactions between the physical specificities of a space and human labor, with an emphasis on the subsequently produced collective knowledge (OIV-VITI 333-2010); by doing so, it alludes to the social and cultural dimensions of terroir.

Preliminary steps of a protocol to isolate transcription factors bound to a specific DNA locus in grapevine using CRISPR-dCas9 system

Cis-acting regulatory elements are DNA sequences that can be bound by transcription factors to regulate the expression of genes in a condition-dependent and tissue-specific way. It is nowadays possible to search for DNA motives and sequences that a given transcription factor is binding or at least can, but it is still hard to have a glance at all the transcription factors that are contemporaneously located at the same locus. Inspired by an existing technique that uses the CRISPR-Cas system in mammal cells, we are trying to develop a protocol to study such regulation in Vitis vinifera. Using the highly sequence-specific binding capacity of a catalytically inactive Cas9 protein (dCas9), our idea is to set up a system to target a desired sequence and precipitate all the crosslinked proteins and distantly interacting chromatin at this locus and analyze them.

Interaction between the enzymes of central carbon metabolism and anthocyanin biosynthesis during grape berry development

Primary and secondary metabolites are major components of grape quality and wine typicity. Their accumulation is interconnected through a complex metabolic network, which is still not well understood. This study aims to investigate how the enzymes of central carbon metabolism interact with anthocyanin biosynthesis during grape berry development: does the accumulation of anthocyanins, which represents a non-negligible diversion of carbon metabolic fluxes, require reprogramming of central enzymes or is it controlled downstream of central metabolism? To this end, 23 enzymes involved in central carbon metabolism pathways have been analyzed in the berries of 3 grape cultivars, which have close genetic background but distinct temporal dynamics of anthocyanin accumulation.

Grape composition and wine quality of Muscat Hamburg cultivar after a specific inactivated dry yeast application as adaptation strategy to climate change

In a climate change context, the management of Mediterranean vineyards should be adapted to the new environmental conditions. Predictive models underline that in the future the most of the Mediterranean vineyard regions is expected to experience further warming events producing challenges in ripening balanced fruit. It is already registered that in warm and dry summers, the ripening process is faster and the balance between phenolic and technological (sugar) maturity may not be the desirable. This study investigates the use of specific inactivated yeast derivatives sprayed on the entire canopies of field grown cv Muscat Hamburg vines.