terclim by ICS banner
IVES 9 IVES Conference Series 9 Reduced bunch compactness in a clone of Tempranillo associates with a complex reciprocal translocation detected by long-read sequencing genomics

Reduced bunch compactness in a clone of Tempranillo associates with a complex reciprocal translocation detected by long-read sequencing genomics

Abstract

Grapevine cultivars are vegetatively propagated to maintain their varietal attributes. However, spontaneous somatic variation emerges during prolonged periods of vegetative growth, providing an opportunity for the natural improvement of traditional grapevine cultivars. Notably, reduction in bunch compactness is a favorable trait in viticulture, offering advantages such as decreased susceptibility to bunch fungal diseases, and a more uniform ripening of berries. To unravel the genetic and developmental mechanisms behind bunch compactness variation, we examined a somatic variant of Tempranillo Tinto cultivar with loose bunches. We found that the mutant clone exhibits a ~50% reduction in pollen viability compared to typical Tempranillo clones. By aligning Illumina and Nanopore whole-genome sequencing reads to a diploid genome assembly of Tempranillo, we identified genome structural variations (SV) specific of this clone: translocation events involving chromosomes 1-3, 7-11, and 8-17. The presence of the SV breakpoints was validated using PCR and Sanger sequencing. The analysis of self-cross progeny of the mutant clone showed that low pollen viability and reduced number of seeds per berry co-segregate with the SV event between specific haplotypes of chromosomes 1 and 3, suggesting a causal effect for this rearrangement. Inspection of Nanopore read alignments identified that the SV 1-3 event corresponds to a complex reciprocal translocation with duplications at the breakpoints of the two involved chromosomes. Considering that heterozygous reciprocal translocations associate with partially incompatible chromosome pairing during meiosis, we propose that this type of SV decreases fruit set rate by lowering gamete viability, ultimately reducing bunch compactness.

DOI:

Publication date: June 14, 2024

Issue: Open GPB 2024

Type: Article

Authors

Pablo Carbonell-Bejerano1*, Noelia Alañón1, Yolanda Ferradás1,2, Nuria Mauri1,3, José Miguel Martínez-Zapater1, Javier Ibáñez1*

1 Instituto de Ciencias de la Vid y del Vino (ICVV, CSIC-CAR-UR), Departamento de Viticultura, Logroño, Spain
2 Departamento de Biología Funcional, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
3 Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Cerdanyola del Vallès, Barcelona, Spain

Contact the author*

Keywords

bunch compactness, clonal variation, genome structural variation, pollen viability, reciprocal translocation

Tags

IVES Conference Series | Open GPB | Open GPB 2024

Citation

Related articles…

Impact of glutathione-rich inactivated yeast on wine chemical diversity

Glutathione-rich inactivated dry yeasts (GSH-IDY) are claimed to accumulate intracellularly and then release glutathione in the must.

Post-plant nematicide timing for northern root-knot nematode in Washington wine grapes

Vigor declines in older vineyards and poor vine establishment in replant situations have been attributed to plant-parasitic nematodes. The northern root-knot nematode, Meloidogyne hapla, is the most prevalent plant-parasitic nematode species found in Washington wine grape vineyards. Management for nematodes in established vineyards is limited to the application of post-plant nematicides. We are evaluating new nematicides that are currently not registered in grape for their efficacy in controlling M. hapla and a part of that evaluation includes improving the alignment of nematicide application timing with the vulnerable second-stage juvenile (J2) life stage of M. hapla.

Climate change impact study based on grapevine phenology modelling

In this work we present a joint model of calculation the budbreak and full bloom starting dates which considers the heat sums and allows reliable estimations for five white wine grape varieties

USE OF COLD LIQUID STABULATION AS AN OENOLOGICAL TECHNIQUE IN WHITE WINEMAKING: EFFECTS ON PHENOLIC, AROMATIC AND SENSORIAL COMPOSITION

The application of different winemaking techniques helps to modify the basic parameters, phenolic profile, and aroma components influencing the final wine quality. In particular, pre-fermentative processes aim to increase the extraction and preservation of grape native compounds. Among them, cold liquid stabulation (macération sur bourbes) consists in maintaining the grape juice on its lees, in suspended condition at low temperature (0-8 °C) for a variable time (generally from 7 to 21 days). The aim of this work is to apply the cold liquid stabulation on two Italian white grape varieties, Arneis and Cortese, to evaluate the impact on basic parameters, color, polyphenolic compounds (TPI), antioxidant power (DPPH), total polysaccharides, and free and glycosylated volatile compounds (GC-MS analysis) during and after the process.

The influence of initial phenolic content on the outcome of pinot noir wine microoxygenation

Over the years, microoxygenation (MOX) has become a popular vinification technique to improve wine sensory qualities. However, among the impacting factors reported