Ancient and recent construction of Terroirs

Abstract

The local wine as an area identified and recognized is a complex socio-historical reality that calls an effort of observation and theoretical reflection using various social sciences that address training and development of human activities rooted in the territories.
The notion of terroir now holds both the front stage of the scientific debates hat agitate professional circles of the winemaking and marketing.
The issue that we discuss below implements a historical approach to pattern formation in wine.

The combination of disciplinary knowledge is essential to consider the overlapping of factors involved in this territorial construction.
There are 4 times logical and chronological: descriptions and looks over the vineyards, organization and demarcation of the territories, control of the vineyards and new institutions, the construction of the wine lands.

DOI:

Publication date: August 26, 2020

Issue: Terroir 2012

Type: Article

Authors

Serge WOLIKOW

Maison des sciences de l’homme, Dijon, USR CNRS 3516, Centre Georges chevrier, UMR, 5565.

Keywords

territory, social construction, délimitation, description.

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Kinetic investigations of the Gewürztraminer volatile organic compounds and color at different temperatures and pHs

Gewürztraminer is a well-known wine famous for its aroma profile, which is characterized by rose petals, cloves, lychees, and other tropical fruit notes.

Stability of 3-mercaptohexanol during white wine storage in relationship to must pre-fermentative fining

3-Mercaptohexanol (3MH) is a volatile thiol occurring in several white and red wines, where it can contribute to fruity attributes. Its content is typically high in wines from certain grape varieties, in particular Sauvignon blanc, where it is considered a varietal marker. The strong nucleophilic character of thiols makes 3MH rather unstable during wine storage, due to the presence of several strong electrophilic species. Among these electrophilics, those arising from the oxidation of flavan3-ols such as catechin and epi-catechin have been indicated as critical for 3MH stability. Accordingly, there is a generalized interest towards the ability of vinification practices to reduce 3MH loss during aging through the management of wine flavan-3-ols content.

Modeling sugar accumulation dynamics of a wide variety of grape cultivars (Vitis vinifera L.)

Climate change is a major challenge in wine production. The IPCC (2014) projected that by the end of the 21st century average temperatures will increase by 1-3.7°C. Consequently, harvest dates could advance by approximately 30 days. A general observed trend is the increase in berry sugar content and decrease in organic acids, posing challenges for winegrowers. Variability among cultivars is a precious resource to adapt viticulture to a changing environment.

AGEING BOTTLED WINES SUBMERGED IN SEA: DOES IT IMPACT WINE COMPOSITION?

Aging wines is a common practice in oenology, which in recent years has undergone some innovations. Currently, we are witnessing the practice of aging bottled wine in depth, immersed in the sea or in reservoirs, for variable periods of time, but so far, little is known about the impact of aging in depth on the physicochemical properties, of wines.
The objective of this work was to evaluate the impact of this practice on the physicochemical characteristics, in particular to verify changes in the volatile composition of wines bottled and subsequently immersed in depth. A red wine from Cabernet Sauvignon was bottled and a set of bottles were submerged from July to February (2020), another set of bottles were submerged from February to September (2020) and another set was kept in the wine cellar. Bottles from each set were analyzed (in triplicate) in July 2021.

Nutrients and heavy metals in a vineyard soil under organic, biodynamic and conventional management

Promoting sustainable agricultural practices is one of the challenges of the last decades. Organic and biodynamic viticulture can be an alternative to intensive viticulture, furthermore contributing to reduction of impact on environment and human health and guaranteeing soil preservation and quality products1. The aim of this experimentation was to evaluate the medium and long-term effects of different agronomic practices in viticulture on nutrient availability and heavy metal accumulation in soil.