Terroir 2012 banner
IVES 9 IVES Conference Series 9 Monitoring arthropods diversity in the “Costières de Nîmes” viticulture landscape

Monitoring arthropods diversity in the “Costières de Nîmes” viticulture landscape

Abstract

Biodiversity loss in agrosystems is partly due to landscape simplification (field enlargement, hedgerows removal…) that led to a loss of heterogeneity of the overall landscape. The aim of this study is to compare biodiversity of different habitats and landscape configurations in order to target strategic conservation actions and their locations in viticulture landscapes to improve biodiversity. The arthropods taxon has been used to evaluate biodiversity dynamics because of its high diversity and supposed ability to rapidly react to landscape dynamics. Arthropods are identified through the RBA method (Rapid Biodiversity Assessment). Arthropod diversity is evaluated in five different habitats and measured by species richness and Shannon index. Within four different radii (50, 100, 150 and 200 meters) around each arthropod sampling site, landscape composition (relative percentage of each land cover type), structure (variability and heterogeneity indexes) and diversity (Shannon index applied to landscape) were analyzed through a Geographic Information System of land cover based on aerial photographs.

The results show significant differences in arthropod diversity among habitats. Cultivated habitats show lower values of diversity than semi natural ones. The landscape approach highlighted negative correlations between arthropod richness and proportion of fruit orchards at all radii. At the smallest scale (50m radius) a positive correlation is found between arthropod diversity and interstitial spaces (plot edges, headlands, roadsides…). Hence, semi natural habitats and non cultivated areas appear to play a major role in the preservation of arthropod diversity in agricultural landscapes. According to these results, landscape and biodiversity actions will be performed at the “Appellation” scale focusing on improving the ecologic connectivity between semi natural habitats supporting biodiversity.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Benjamin PORTE (1), Joël ROCHARD (1), Josépha GUENSER (2), Maarten VAN HELDEN (3)

(1) Institut Français de la Vigne et du Vin, Domaine de Donadille, 30320 Rodilhan, France
(2) ADERA-Vitinnov, ISVV 210, chemin de Leysotte, CS 50008, 33882 Villenave d’Ornon, France
(3) Bordeaux Sciences Agro, Univ. Bordeaux, ISVV, 1 cours Général De Gaulle, 33170 Gradignan, France

Contact the author

Keywords

Biodiversity, landscape, vineyard, RBA method, arthropods

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

White grape must processed by UHPH as an alternative to SO2 addition: Effect on the phenolic composition in three varieties

The quantity and distribution of polyphenols in musts play a fundamental role in the white winemaking. This is because these substances are exposed to oxidation reactions, which are catalysed by the polyphenol oxidase (PPO), leading to a decrease in the quality of the wines produced. PPO is inactivated by SO2, but currently, due to the restrictions of the legislation, other methodologies are being investigated. Ultra-High Pressure Homogenization (UHPH) is a non-thermal physic technology that exerts an ultrahigh pressure pumping (>200 MPa) of a fluid through a valve in a continuous system.

Ecophysiological performance of Vitis rootstocks under water stress

The use of rootstocks tolerant to soil water deficit is an interesting strategy to cope with limited water availability. Currently, several nurseries are breeding new genotypes, but the physiological basis of its responses under water stress are largely unknown. To this end, an ecophysiological assessment of the conventional 110-Richter (110R) and SO4, and the new M1 and M4 rootstocks was carried out in potted ungrafted plants. During one season, these Vitis genotypes were grown under greenhouse conditions and subjected to two water regimes, well-watered and water deficit. Water potentials of plants under water deficit down to < -1.4 MPa, and net photosynthesis (AN) <5 μmol m-2 s-1 did not cause leaf oxidative stress damage compared to well-watered conditions in any of the genotypes. The antioxidant capacity was sufficient to neutralize the mild oxidative stress suffered. Under both treatments, gravimetric differences in daily water use were observed among genotypes, leading to differences in the biomass of root, shoot and leaf. Under well-watered conditions, SO4 and 110R were the most vigorous and M1 and M4 the least. However, under water stress, SO4 exhibited the greatest reduction in biomass while M4 showed the lowest. Remarkably, under these conditions, SO4 reached the least negative stem water potential (Ψstem), while M1 reduced stomatal conductance (gs) and AN the most. In addition, SO4 and M1 genotypes also showed the highest and lowest hydraulic conductance values, respectively. Our results suggest that there are differences in water use regulation among genotypes, not only attributed to differences in stomatal regulation or intrinsic water use efficiency at the leaf level. Therefore, because no differences in canopy-to-root ratio were achieved, it is hypothesized that xylem vessel anatomical differences may be driving the reported differences among rootstocks performance. Results demonstrate that each Vitis rootstock differs in its ecophysiological responses under water stress.

Influence of grapes origin and yeast strain on aroma profile of corvina and corvinone dry passito wines

Valpolicella is a wine region characterized by a wide use of the technology of grape drying for the production of two red passito wines, recognized as PDOs, “Recioto della Valpolicella” and the most famous “Amarone della Valpolicella”. Geographical origin of the grapes can influence wine composition by grape chemical composition yeast behaviour during fermentation. This study investigates the impact of different commercial yeast strains on aroma profiles of wines produced with withered grapes of different origins. In addition, the influence of spontaneous fermentation is also considered. METHODS: Experimental red wines were produced with a standard winemaking protocol with withered Corvina and Corvinone grapes obtained from two different geographical areas within the Valpolicella region. Fermentations were carried out with four different commercial yeasts plus a spontaneous fermentation. Wines were analysed by means of SPE- and SPME-GC-MS techniques and sensory analysis (sorting task).

Experiments with the use of stems in Pinot noir winemaking

Vinification trials were carried out between 2018 and 2021 in the experimental winery at Laimburg Research Centre, Alto Adige, to test the effect of grape stem inclusion during fermentation of Pinot Noir.

Assessing the climate change vulnerability of European winegrowing regions by combining exposure, sensitivity and adaptive capacity indicators

Winegrowing regions recognized as protected designations of origin (PDOs) are closely tied to well defined geographic locations with a specific set of pedoclimatic attributes and strictly regulated by legal specifications. However, climate change is increasingly threatening these regions by changing local conditions and altering winegrowing processes. The vulnerability to these changes is largely heterogenous across different winegrowing regions because it is determined by individual characteristics of each region, including the capacity to adapt to new climatic conditions and the sensitivity to climate change, which depend not only on natural, but also socioeconomic and legal factors. Accurate vulnerability assessments therefore need to combine information about adaptive capacity and climate change sensitivity with projected exposure to new climatic conditions. However, most existing studies focus on specific impacts neglecting important interactions between the different factors that determine climate change vulnerability. Here, we present the first comprehensive vulnerability assessment of European wine PDOs that spatially combines multiple indicators of adaptive capacity and climate change sensitivity with high-resolution climate projections. We found that the climate change vulnerability of PDO areas largely depends on the complex interactions between physical and socioeconomic factors. Homogenous topographic conditions and a narrow varietal spectrum increase climate change vulnerability, while the skills and education of farmers, together with a good economic situation, decrease their vulnerability. Assessments of climate change consequences therefore need to consider multiple variables as well as their interrelations to provide a comprehensive understanding of the expected impacts of climate change on European PDOs. Our results provide the first vulnerability assessment for European winegrowing regions at high spatiotemporal resolution that includes multiple factors related to climate exposure, sensitivity, and adaptive capacity on the level of single winegrowing regions. They will therefore help to identify hot spots of climate change vulnerability among European PDOs and efficiently direct adaptation strategies.