Terroir 2012 banner
IVES 9 IVES Conference Series 9 Relationships between berry quality and climatic variability in grapevine cultivars from Piedmont

Relationships between berry quality and climatic variability in grapevine cultivars from Piedmont

Abstract

A major topic in viticultural research is the analysis of the relationships between climate on one side, and grape and wine quality on the other. It is well known that climatic conditions have a high impact on growth and development of grapevine and consequently on yield and quality. In particular, wine quality is correlated with bioclimatic indexes, which are based on air temperature and cumulated rainfall during the growing season.

This study was aimed at creating and analyzing a dataset containing berry quality data collected on 13 grapevine cultivars of Piedmont, and climatic and geomorphological data of the vineyards where berry samples were taken. Berry quality and meteorological data were collected from 1999 to 2010 and bioclimatic indexes were calculated over the vegetative growing period.

In a preliminary analysis, for each cultivar an ANOVA was performed, and significant differences among years as concerns total soluble solids (TSS), titratable acidity and pH were detected.

Pearson’s correlation analysis was applied separately for each cultivar, in order to perform a first evaluation of the relationships between climatic, geomorphological and berry quality data. As expected, significant relationships between berry quality and climatic data were detected. Such relationships changed from one cultivar to another. PCA was carried out to examine TSS distribution among the different areas, based on some climatic and geomorphological parameters. In particular, Huglin index, cumulated precipitation, number of thermal units, cumulated radiation, altitude, slope and aspect were chosen.

A multiple regression analysis was also performed and the regression coefficients were used to build synthesis maps, using digital layers for each cultivar, and applying basic GIS techniques.

DOI:

Publication date: October 1, 2020

Issue: Terroir 2012

Type: Article

Authors

Tiziana LA IACONA (1) , Simone FALZOI (2) , Andrea SCHUBERT (1), Federico SPANNA (2)

(1) Dipartimento Colture Arboree, University of Torino, via Leonardo da Vinci, 44. 10095 Grugliasco (TO). Italy
(2) Piedmont Region, Phytosanitary Service, Agrometeorology Sector. Via Livorno, 60. 10144, Torino. Italy

Contact the author

Tags

IVES Conference Series | Terroir 2012

Citation

Related articles…

Vite e territorio. Il caso della Franciacorta nel medioevo

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Merano Wine Festival 2020

IVES was a partner of the Merano Wine Festival (innovation section), a digital event held from 6 to 10 November 2020. During this festival participants attended scientific conferences on cutting-edge topics for the wine industry. Some of the topics covered have been selected from our journals

Vine phenology and climate in Bordeaux, since the beginning of the XIXth century

We analyze the effects of climate (temperature and pluviometry) on the phenologic stages of the vine (débourrement, flowering, ripening and grape harvest). We rebuilt time series starting from the beginning of the XIXth century for the Medoc and the area of Bordeaux, data very seldom mobilized by researchers.

Novel analytical technologies for wine fingerprinting in and beyond the laboratory

For characterization, sensory designing and authentication rapid analytical technologies have become available. Some, like Proton Transfer Reaction Mass Spectrometry allow a rapid spectrum of the volatile compounds of wines. Combined with chemometrics wines can be characterized. The same approach can be used to calculate the results of virtual mixtures and allow formulation of constant quality blends. Other new techniques and portable devices based on spectroscopy allow measurements on production sites and in grocery stores, even for the smart consumer. We will present some examples of the application of these techniques for authentication of wines, both in the laboratory and on site.

Automated red microvinification (1kg) adapted to the needs of varietal innovation

The creation of disease-resistant varieties adapted to climate change is a key challenge for the future of the wine industry. At present, the selection of these new varieties is essentially based on screening for genetic markers of resistance and agronomic criteria, due to the small number of vines available per genotype. Integrating screening for oenological criteria into the early stages of selection would speed up this process.