Terroir 2020 banner
IVES 9 IVES Conference Series 9 Distinguishing of red wines from Northwest China by colour-flavour related physico-chemical indexes

Distinguishing of red wines from Northwest China by colour-flavour related physico-chemical indexes

Abstract

Aim: Northwest China occupies an important position in China’s wine regions due to its superior geographical conditions with dry climate and sufficient sunlight. In this work, we aimed to investigate the physico-chemical colour and flavour characteristics of red wine in Northwest China.

Methods and Results: A total of 196 commercial dry red wines from Ningxia autonomous region, Gansu province and Xinjiang autonomous region in Northwest China were sampled. Spectro-analysis and chemical titration were used to quantify physico-chemical indicators related to wine colour and flavour, including total anthocyanins, co-pigments, monomeric anthocyanins, polymeric anthocyanins, ionisation index, CIE color space, total phenols, flavonol, ethanol index, total tannin, gelatin index, HCl index, DPPH antioxidant activity, tartrate ester, titratable acid, and pH value. Principal Component Analysis (PCA) of the data showed that wine samples in Ningxia, Gansu and Xinjiang region had obvious clustering phenomena. Among them, total anthocyanin and polymeric anthocyanins in Ningxia wines were higher compared to other wines. Ningxia wines also had the highest total acids and lighter colour whereas Gansu wines had greater amounts of monomeric anthocyanins, co-pigments and phenolic indexes. Gansu wines were darker in colour with the highest pH values. The parameters of Xinjiang wines were ranged between Ningxia wines and Gansu wines. PCA also showed good discriminant results on wine vintages. Wines older than 3 years had more polymeric anthocyanins and stable colour whilst younger wines had more total anthocyanin and monomeric anthocyanin with brighter colour. In addition, younger wines had the highest phenolics. Grape cultivars also contributed to the difference of colour and flavour associated indexes. Among them, Cabernet Sauvignon wines displayed distinct characteristics compared to other wines. Values of total anthocyanins, DPPH antioxidant activity, ionisation index, Cab and HCl acid indexes of Cabernet Sauvignon wines were higher than those of other wines. Finally, a convolutional neuralnetwork model was used to discriminate and analyses the categorical data of wines. These data were standardized and analysised using TensorFlow. The corresponding fitness indexes were 99.14%, 90.52%, and 89.66% from Northwest China based on region, cultivar, and vintage.

Conclusions: 

Colour and flavour associated indexes of wines from Northwest China are strongly impacted by wine regions, cultivars, and vintages.

Significance and Impact of the Study: Wine regions in Northwest China are developing drastically in recent decades, however relevant criteria of colour-flavour quality to help manipulate winemaking practices are lacking in local wineries to ensure the quality of wine style. Our results highlighted the possibility of establishing such wine quality criteria specially for Northwest China based on building a discrimination model on wine physico-chemical related indicators.

DOI:

Publication date: March 17, 2021

Issue: Terroir 2020

Type: Video

Authors

Yu Zhao1, Guojie Jin1, Jiao Jiang1, Shijin Xue1, Kai Hu1*, Yongsheng Tao1,2*

College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
Shaanxi Engineering Research Center for Viti-viniculture, Yangling, Shaanxi 712100, China

Contact the author

Keywords

Wine region, spectro-analysis, discrimination analysis, neural network analysis, colour-flavour physico-chemical indicators

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

«Nektar» -the new red variety wine grape aromatic high quality

The multi-annual study of the International Genetic Bank of the Grape Vine has shown that red varieties are enough, but the red varieties that produce high-quality red wine are minimal.

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).

Seasonal vine nutrient dynamics and distribution of shiraz grapevines

The nutrient reserves in the grapevine perennial structure perform a critical role in supplying the grapevine with nutrients

Soil management of interrow spacing as an important factor to protect the vineyard soils from runoff and erosion under the Mediterranean climate

Nearly one third of the Herault vineyard (south of France) is planted on soils very sensitive to water runoff and erosion

LC-MS based metabolomics and target analysis to study the chemical evolution of wines stored under different redox conditions

Oxygen is a key player in oenology, since its effects can be a blessing, benefiting wine quality, or a curse causing irreversible damage.