Terroir 2020 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2020 9 History and innovation of terroir 9 Usefulness and limits of the crop water stress index obtained from leaf temperature for vine water status monitoring

Usefulness and limits of the crop water stress index obtained from leaf temperature for vine water status monitoring

Abstract

Aims: This work aimed i) to calibrate the accuracy of estimating vineyard water status by crop water stress index (CWSI) compared to stem water potential; ii) to determine the time interval during the day that best correlates to stem water potential and iii) to understand the its usefulness.

Methods and Results: Four levels of irrigation were set up in 2017 on a Cabernet-Sauvignon vineyard grafted to 110R in Morata de Tajuña (Madrid, Spain). The experimental design was a completely randomized four-block design. During two seasons, 2018 and 2019, stem water potential (SWP) and leaf temperature were measured at three time points during the day (8:00; 12.00 and 16:00 solar time) in five dates during 2018 and three dates in 2019. CWSI was calculated based on leaf temperature as the ratio: (Ttreat leaf  Twet)/(Tdry – Twet). Leaf temperature (Ttreat leaf) was measured with an infrared camera model FLIR-E60; Four shaded leaves per treatment were sampled at each time of measurement, for a total of 16 leaves per measurement interval. ANOVA for CWSI and stem water potential was also performed to compare the sensitivity of each parameter to vine water status. All statistical analyses were performed with the Statistix10 package.

Results showed that stem water potential was slightly more sensitive than CWSI to estimate vine water status. Different relationships were found during the season between CWSI and SWP. The determination coefficient was higher at midseason than at the beginning or late in the growing season. The highest R2 were found at noon and during the evening, being no-significant in the morning.

Conclusions: 

Crop Water Stress Index obtained from leaf temperature could be used to estimate plant water status although assuming that it is less sensitive than Stem Water Potential. The index was more accurate in describing the plant water status in midseason than either early or late in the season and better at midday and evening than in the morning.

Significance and Impact of the Study: The study confirms the use of CWSI as a tool to determine vineyard water status and its limitations. Limitations include its effectiveness being confined to midseason and measurements are recommended to be collected from noon onwards. We propose to keep CWSI lower than 0.6 from budbreak until bloom and to move within 0.6 to 0.8 during maturation to ensure SWP is over -1.0MPa (-10 bar) and within -1.0 and -1.2 MPa during ripening.

DOI:

Publication date: March 23, 2021

Issue: Terroir 2020

Type: Video

Authors

G. Camacho-Alonso, P. Baeza*, G. Mendoza, A. Hueso, A.M. Tarquis

Research Centre for the Management of Agricultural and Environmental Risks – CEIGRAM
Universidad Politécnica de Madrid, 28040 Ciudad Universitaria, Madrid, Spain

Contact the author

Keywords

Crop water stress index, stem water potential, thermal images

Tags

IVES Conference Series | Terroir 2020

Citation

Related articles…

WINE WITHOUT ADDED SO₂: OXYGEN IMPACT AND EVOLUTION ON THE POLYPHENOLIC COMPOSITION DURING RED WINE AGING

SO₂ play a major role in the stability and wine during storage. Nowadays, the reduction of chemical input during red winemaking and especially the removing SO₂ is a growing expectation from the consumers. Winemaking without SO₂ is a big challenge for the winemakers since the lack of SO₂ affects directly the wine chemical evolution such as the phenolic compounds as well as its microbiological stability.

Profiling the Metschnikowia yeast populations in spontaneous fermentation of Amarone della Valpolicella

The microbial diversity during spontaneous grape must fermentation has a determinant influence on the chemical composition and sensory properties of wine. Therefore, yeast diversity is an important target to better understand wine regionality. Hence, the aim of this study was to isolate, identify, and characterize the yeast core microbiota in grape must during the early stage of lab-scale spontaneous fermentation of withered grapes to produce Amarone della Valpolicella wine (Verona, Italy).

A spatial explicit inventory of EU wine protected designation of origin to support decision making in a changing climate

Winemaking areas recognized as protected designations of origin (PDOs) shape important economic, environmental and cultural values that are tied to closely defined geographic locations. To preserve wine products and wine-growing practices adopted in different PDOs these areas are strictly regulated by legal specifications. However, quality viticulture is increasingly under pressure from climate change, which is altering the local conditions of many winegrowing areas. Therefore, maintaining traditional wine products will require the adoption of tailored adaptation strategies, including possible changes in the legal regulation of protected wines. To this end, it is necessary to have a comprehensive knowledge on PDOs including their extension, products and allowed practices. While there have been efforts to build databases that summarize the characteristics for individual wine PDO areas and to quantify the related effects of climate change, much information is still included only in the official documentation of the EU geographical indication register and has never been collected in a comprehensive manner. With this study we aim at filling this gap by building a spatial inventory of European wine PDOs that supports decision making in viticulture in the context of climate change. To map and characterize European wine PDOs, we analysed their legal documents and extracted relevant information useful for climate change adaptation. The output consists of a comprehensive geographical dataset that identifies the boundaries of all 1200 European wine PDOs at unprecedented spatial resolution and includes a set of legally binding regulations, such as authorized vine varieties, maximum yields and planting density. The inventory will allow researchers to analyse the impacts of climate change on European wine PDOs and support decision makers in developing tailored adaptation strategies. This includes, among others, the evaluation of new vineyard site selection, the expansion of cultivated varieties or the authorization of irrigation in vineyards.

Extracellular substances of lactic acid bacteria interests in biotechnological practices applied to enology

Extracellular substances (ECS) represent all molecules outside the cytoplasmic membrane, which are not directly anchored to the cell wall of microorganisms living through a planktonic or biofilm phenotype. They are the high-biomolecular-weight secretions from microorganisms (i.e. extracellular polymeric substances – EPS – proteins, polysaccharides, humic acid, nucleic acid), and the products of cellular lysis and hydrolysis of macromolecules. In addition, some high- and low-molecular-weight organic and inorganic matters from environment can also be adsorbed to the EPS. All can be firmly bound to the cell surface, associated with the EPS matrix of biofilm, or released as being freely diffusing throughout the medium.

Correlations between sensory characteristics and colloidal content in dry white wines

Must clarification is an important step occurring just after grape extraction in the elaboration of white wine, consisting in a solid-liquid separation. Traditionally, low must turbidity, around 50-150 NTU, is generally reached in white winemaking in order to prevent reductive aromas and facilitating alcoholic fermentation. Alternatively, a higher turbidity (300 NTU or above) can be sought for reasons such as a better expression of grapes identity (terroir), or for getting a must matrix that could supposedly lead to wines having greater ageing potential.