Enoforum 2021
IVES 9 IVES Conference Series 9 Enoforum Web 9 Enoforum Web Conference 2021 9 qNMR metabolomics a tool for wine authenticity and winemaking processes discrimination

qNMR metabolomics a tool for wine authenticity and winemaking processes discrimination

Abstract

qNMR Metabolomic applied to wine offers many possibilities. The first application that is increasingly being studied is the authentication of wines through environmental factors such as geographical origin, grape variety or vintage (Gougeon et al., 2019). Another less common approach is from a qualitative point of view by studying the various oenological practices used that are an integral part of the elaboration of a wine. We wondered whether quantitative NMR could be used to dissociate the physical or chemical processes commonly used in oenology. The objective of this work was to provide a better understanding of the interactions between oenological processes and wine by determining the metabolites responsible for differentiation through 1H-NMR fingerprinting and chemometrics. 

About 40 molecules were quantified on wine samples that have undergone several physical and chemical processes. Principal Component Analysis (PCA), Partial Least Squares Discriminant Analysis (PLS-DA) and S-score were performed for the analytical discrimination of winemaking processes. 

The results obtained show that qNMR combined with chemometrics allows to dissociate not only physical processes such as filtration, but also chemical processes such as maceration temperature, enzymatic treatment and fining. In addition, the metabolites involved in the discrimination of these winemaking processes could also be determined.

The 1H-NMR metabolomics is a fast technique that could be used as a tool to help professionals decide on technical itineraries. 

DOI:

Publication date: April 23, 2021

Issue: Enoforum 2021

Type: Article

Authors

Inès Le Mao1, Gregory Da Costa1, Jean Martin1, Eric Pedrot1, Soizic Lacampagne1, François Guyon2, Tristan Richard1

1Université de Bordeaux, Œnologie EA 4577, USC 1366 INRA, INP, ISVV, 210  chemin de Leysotte, 33882 Villenave d’Ornon, France
2Service Commun des Laboratoires, 3 Avenue du Dr. Albert Schweitzer, Pessac Cedex, France

Contact the author

Tags

Enoforum 2021 | IVES Conference Series

Citation

Related articles…

Prevention of wine oxidation during barrel aging: an innovative method to measure antioxidant

Wine oxidation is a problem that affects the freshness, the aromatic profile, the colour and also the mouthfeel of the wine. It mainly concerns white wines. Oxygen interactions with wine compounds lead to the phenomena cited above that are responsible for the depreciation of these wines. Barrel aging is a crucial step in the wine process because it allows many modifications as wine enrichment, colour stabilization, clarification and also a slow oxygenation of the wine. Effects of the oak barrel have to be known to prevent oxidation of the wine. We have been interested in the main antioxidant compounds released by oak barrels to the wine and we have developed an innovative method to reach directly these antioxidant compounds at the oak stave surface.

Freeze-thaw treatment to enhance phenolic ripening and tannin oxidation of seeds

Phenolic ripening represents a major interest for quality wine producers. Nevertheless, climatic or genotypical limitations can often prevent optimal maturation process. During winemaking seeds can be easily separated and technologically processed to improve their quality.

All acids are equal, but some acids are more equal than others: (bio)acidification of wines

Insufficient acidity in grapes from warm(ing) climates is commonly corrected through addition of tartaric acid during vinification, and less so with other organic acids. One alternative approach involves bio-acidification with certain strains of Lachancea thermotolerans (LT) via lactic acid production during fermentation.

A microwave digestion ICP-MS method for grapevine bark elemental profiling

A rapid and reproducible microwave (MW)-assisted acid digestion protocol was developed to determine the elemental composition of grapevine bark samples using ICP-MS.

Lactic acid bacteria: A possible aid to the remediation of smoke taint?

With climate change, the occurrence of wildfires has increased in several viticultural regions of the world. Subsequently, smoke taint has become a major issue, threatening the sustainability of the wine industry.