Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of environmental conditions in vscs production during wine fermentation by Saccharomyces cerevisiae

Impact of environmental conditions in vscs production during wine fermentation by Saccharomyces cerevisiae

Abstract

The aroma of wine is one of the most important determinants of quality as it strongly influences the consumer’s acceptance or rejection. Among the thousands of molecules comprising the wine aroma, sulfur-containing compounds can be considered as a “double-edged sword”: some of them, deriving from varietal precursors provide fruity pleasant aromas, while other ones, produced by yeast metabolism are related to “unpleasant” aromas. The negative impact and their low limit threshold make these volatile sulfur compounds (VSCs) an essential object of study to control the quality of the wine. To date, the chemical and metabolism mechanisms involved in the formation of VSC during fermentation remain poorly elucidated. Furthermore, the incidence of environmental or technological factors that may interact with yeast metabolism on the VSCs production has not been comprehensively studied. In this context, this project aimed to further investigate the formation of VSCs during S. cerevisiae wine fermentation, assessing the relative contribution of yeast metabolism and chemical conversions to VSCs production and studying the modulation of these productions by environmental (nitrogen resource composition and availability, vitamin concentration) or technological (SO2 addition) parameters. Fermentations were carried out using different conditions (YAN, pantothenic acid concentrations, methionine, and cysteine availability) with 4 S. cerevisiae strains and the production of 18 VACs was measured by GC-MS to elucidated how the variation of these parameters changes final concentration. As expected the addition of methionine incremented the final production of methional derivated compounds but didn’t affect the rest of the compounds. The addition of cysteine increment the production of the esters (methyl thioacetate and ethyl thioacetate) without changing the rest concentrations of other compounds. We also found out that an increment in pantothenic acid, as the addition of methionine, can promote the production of methional-derived compounds. With these data, we could be able to reduced total VSC production during fermentation.

DOI:

Publication date: September 3, 2021

Issue: Macrowine 2021

Type: Article

Authors

Rafael Jimenez Lorenzo, Pascale Brial, Cristian Picou, Marc Perez, Audrey Bloem, Carole Camarasa

UMR SPO, INRA, Université Montpellier, SupAgro

Contact the author

Keywords

saccharomyces cerevisiae, vsc, fermentation, yan, gc-ms

Citation

Related articles…

Digitization for automation–A frost management case study

The need to mitigate the yield impact of Spring frosts in vineyards remains a significant challenge around the world.

Red wine oxidation study by accelerating ageing tests and electrochemical method

Red wines can undergo many undesirable changes during the winemaking process and storage, particularly oxidative degradation due to numerous atmospheric oxygen intakes. This spoilage can impact organoleptic properties and color stabilization but this impact depends on the wine composition. Phenolic compounds constitute primary targets to oxidation reactions

Monitoring of ripening and yield of vineyards in Nemea region using UAV

Nemea region is the largest POD zone in Greece. Agiorgitiko (Vitis vinifera L. cv.) is the most cultivated variety in Greece with significant wine potential.

Separation and elucidation of ethylidene-bridged catechin oligomers using preparative-HPLC and NMR

During wine aging, small amounts of oxygen are absorbed and initiate a cascade of oxidation reactions. These aging reactions create many products including ethylidene-bridged oligomers and polymers of endogenous polyphenols, like flavan-3ols.

Lactiplantibacillus plantarum – A versatile tool for biological deacidification

Malolactic fermentation (MLF) is a secondary wine fermentation conducted by lactic acid bacteria (LAB). This fermentation is important in winemaking as it deacidifies the wine, converting L-malic acid into L-lactic acid and carbon dioxide, and it contributes to microbial stability. Wine pH is highly selective, and at pH below 3.5 generally only strains of O. oeni can survive and express malolactic activity, while under more favorable growth conditions above pH 3.5, species of Lactobacillus and Pediococcus may conduct the MLF. Among the LAB species Lactiplantibacillus plantarum strains have shown most interesting results under hot climate conditions, not only for their capacity to induce MLF, but also for their homo-fermentative properties towards hexose sugars, which makes them suitable for induction of MLF in high pH and high alcohol wines, when inoculated at the beginning of alcoholic fermentation.