Macrowine 2021
IVES 9 IVES Conference Series 9 Evaluating analytical methods for quantification of glutathione in grape juice and wine

Evaluating analytical methods for quantification of glutathione in grape juice and wine

Abstract

AIM: Glutathione (GSH) is a powerful natural antioxidant, considered as a promising molecule against oxidative damage of aroma during winemaking and storage. His concentration in the grape juice is variable. Enological practice in the cellar can promote the preservation of the GSH in the grape juice. Recently the prescription of OIV allows to add glutathione rich substances to the must. This new practice creates an increasing interest in the quantification of GSH. Several analytical methods were published to measure GSH[1,2,3,4] and his dimer (GSSG) separately[5] or together as total glutathione[6] content. In this work we compared two analytical methods for the analyses of grape juice and wine samples.

METHODS: The first method is an enzymatic assay (EA), based on the reaction of thiol with DTNB in the presence of glutathione reductase enzyme to measure the total glutathione content. This method was automatized to allow high through-put measurements in the concentration range of 5-100mg/l. The second method, using UPLC-MS/MS, is more sensitive (LOD = 0.5mg/l) and permits simultaneous quantification of GSH, GSSG and additionally the sulfonated form of glutathione (GSSO3H).

RESULTS: The best results were obtained with 2.5g/l ascorbic acid. Using the two analytical methods, we found a strong correlation (R2=0.98) between the total glutathione (EA) and the sum of GSH and GSSG (UPLC-MS/MS) in grape juice samples (n>100), where the GSSO3H concentration was low (0-8 mg/l) comparing to the GSH and GSSG (5-100mg/l). In wine samples the total glutathione concentration was low (2-7mg/l) and the GSSO3H was more important (5-9mg/l) due to the combination of SO2 with the glutathione. View the high reactivity of GSH, a special attention should be accorded to the preparation and the storage of grape juice samples. We compared the effect of different concentration of SO2 and ascorbic acid as additives and found that 2.5g/l ascorbic acid gave the best results.

CONCLUSION

Based on our results the enzymatic assay is an economic alternative to measure the total glutathione concentration of grape juice. However for wine the UPLC-MS/MS method is recommended, to reach the necessary sensitivity and to analyze all glutathione species.

DOI:

Publication date: September 7, 2021

Issue: Macrowine 2021

Type: Article

Authors

Ágnes Dienes-Nagy

Agroscope, Nyon, Switzerland,Frédéric VUICHARD, Agroscope, Nyon, Switzerland Marie BLACKFORD, Agroscope, Nyon, Switzerland Fabrice LORENZINI, Agroscope, Nyon, Switzerland

Contact the author

Keywords

glutathione, enzymatic assay, uplc-ms/ms

Citation

Related articles…

The history of the first demarkated wine region of the world – the Tokaj wine region

The optimal climatic conditions of the region were proved in 1867, when a leaf-print of Vitis tokaiensis was found in a stone from miocen age (13 million years ago).

The exploitation of Croatian grapevine genetic resources for the breeding of new resistant cultivars 

Croatian viticulture is mainly based on native grapevine varieties susceptible to various diseases and pests, which leads to unsustainable use of large amounts of pesticides. The sustainable development of viticulture in the future will only be possible by increasing the resistance of the grapevine through the development of new resistant varieties. Breeding programs have been launched in the leading wine-growing countries to develop resistant varieties possessing high-quality levels. Native cultivars from Croatia are not included in the breeding programs of other countries.

Differences in the chemical composition and “fruity” aromas of Auxerrois sparkling wines from the use of cane and beet sugar during wine production.

The main objective of this study was to establish if beet sugar produces a different concentration of “fruity” volatile aroma compounds (VOCs), compared to cane sugar when used for second alcoholic fermentation of Auxerrois sparkling wines. Auxerrois base wine from the 2020 vintage was separated into two lots; half was fermented with cane sugar and half with beet sugar (both sucrose products and tested for sugar purity). These sugars were used in yeast acclimation (IOC 2007), and base wines for the second fermentation (12 bottles each). Base wines were manually bottled at the Cool Climate Oenology and Viticulture Institute (CCOVI) research winery. The standard chemical analysis took place at intervals of 0, 4 weeks, and 8 weeks post-bottling. Acidity and pH measurements were carried out by an auto-titrator. Residual Sugar (g/L) (glucose (g/L), fructose (g/L)), YAN (mg N/L), malic acid, and acetic acid (g/L) were analyzed by Megazyme assay kits. parameters were analyzed by Megazyme assay kits. Alcohol (% v/v) was assessed by GC-FID. VOC analysis of base wines, finished sparkling wines, as well as the two sugars in model sparkling wine solutions, was carried out by GC-MS. VOCs included ethyl octanoate, ethyl hexanoate, ethyl butanoate, ethyl decanoate, ethyl-2-methylbutyrate, ethyl-3-methylbutyrate, ethyl 2-methyl propanoate, ethyl 2- hydroxy propanoate, 1-hexanol, 2-phenylethan-1-ol, ethyl acetate, hexyl acetate, isoamyl acetate and 2-phenylethyl acetate.

Field-grown Sauvignon Blanc berries react to increased exposure by controlling antioxidant homeostasis and displaying UV acclimation responses that are influenced by the level of ambient light

Leaf removal in the bunch zone is a common viticultural practice with several objectives, yet it has been difficult to conclusively link the physiological mechanism(s) and metabolic berry impact to this widely practiced treatment. We used a field-omics approach1 in a Sauvignon blanc high altitude model vineyard, showing that the early leaf removal in the bunch zone caused quantifiable and stable responses (over years) in the microclimate where the main perturbation was increased exposure. We provide an explanation for how leaf removal leads to the shifts in grape metabolites typically linked to this treatment and confirm anecdotal evidence and previous reports that leaf removal treatment at an early stage of berry development affects “quality-associated” metabolites (monoterpenes and norisoprenoids).

The use of microwaves during the maceration of Cabernet Sauvignon wines for improving their chromatic characteristics

The use of new technologies such as microwaves (MW) arose in recent years as an efficient alternative to reduce the use of sulfur dioxide (SO2) and as a method for improving wines in terms of color and aroma [1, 2]. MW (non-ionizing electromagnetic waves with frequencies between 300 MHz and 300 GHz) have been widely applied in the food industry in order to reduce processing time and favor food preservation.