Macrowine 2021
IVES 9 IVES Conference Series 9 The anthocyanin profile of galician endangered varieties. A tool for varietal selection

The anthocyanin profile of galician endangered varieties. A tool for varietal selection

Abstract

AIM: The current loss of genetic grapevine diversity is mainly due to the reduced number of varieties used for making wine. A way of preserved endangered varieties is the establishment of germplasm banks. The anthocyanin profile is a key factor in determining the oenological potential of red wine grape varieties. Thus, this work analyses the anthocyanin profiles of 29 varieties from the germplasm bank located in ¨Estación de Viticultura y Enología de Galicia¨ (EVEGA), Ourense (Galicia, Northwest Spain) in 2018 and 2019 seasons. 

METHODS: At harvest, grapes were picked up and the anthocyanin substances were extracted and analyzed by HPLC (1, 2). Results were subjected to statistical analysis, ANOVA (factor variety) and Principal Component Analysis (PCA).

RESULTS: The anthocyanins were identified as the monoglucoside (GLU) acetylglucoside (AC) and p-coumaroylglucoside forms (CM) of cyanidin (Cy), delphinidin (Dp), malvidin (Mv), pelargonidin (Pel), peonidin (Pn) and petunidin (Pt). Sixteen compounds were identified and quantified (mg/Kg of berry fresh weight, FW). Significant diferences between varieties (p<0.001) were found for the biannual means of all compounds. MvG had the highest content in all varieties analyzed, with the exception of Zamarrica, Xafardán, Moscatel de Hamburgo and Brancellao. Respect to the rest of varieties, Sousón, Castañal, Ferrón, Espadeiro and Caíño Bravo (1832, 1323, 1327, 1173 and 1097 mg/Kg FW respectively) showed the highest contents of Total Anthocyanin. It is worth noting that these varieties belong to the same genetic population (3).These contents were higher than those found in Mencia (643 mg/Kg FW) and Tempranillo (891 mg/Kg FW), varieties widely cultivated in Galicia and Spain respectively.

Application of Principal Component Analysis (PCA) to experimental data showed a good separation of varieties according to the anthocyanin profile. (71.32 and 74.22 % of the total variance in 2018 and 2019 respectively). PCA also showed a group including Ferrón, Sousón, Castañal and Espadeiro varieties related to high contents of ΣGLU, ΣDel, ΣPet and ΣMal

CONCLUSION

 Results demonstrated a high degree of anthocyanin profile difference between the varieties analyzed. Due to their anthocyanidin profile some of these varieties could play an important role in the red winery industry.

 

DOI:

Publication date: September 10, 2021

Issue: Macrowine 2021

Type: Article

Authors

Ángela Díaz Fernández

Viticulture and Oenology Station of Galicia [EVEGA] (Ourense, Galicia- Spain), Viticulture and Oenology Station of Galicia (EVEGA), Ourense (Galicia)  2 Technological Agri-Food Institute of Extremadura (CICYTEX, INTAEX), Badajoz (Extremadura).

Contact the author

Keywords

Vitis vinifera, red grapevine, germplasm bank, anthocyanidine

Citation

Related articles…

Directed Evolution of Oenococcus oeni: optimising yeast-bacteria interactions for improved malolactic fermentation

Malolactic fermentation (MLF) is a secondary step in the vinification process and it follows alcoholic fermentation (AF) which is predominantly carried out by Saccharomyces cerevisiae. These two processes result in the degradation of metabolites to produce secondary metabolites which also contribute to the final wine flavour and quality. AF results in the production of ethanol and carbon dioxide from sugars and MLF stems from the degradation of L-malic acid (a dicarboxylic acid) to L-lactic acid (a monocarboxylic acid). The latter process results in a smoother texture as the acidity of the wine is reduced by the process, it also adds to the flavour complexity of the wine.

Managing soil health in vineyards: knowns and unknowns 

The use of soil conservation practices in wine grape production is becoming common throughout the world in response to an increased awareness of the value of soil health to maintain crop productivity and environmental quality. However, little information is available on the meaning of soil health within a viticultural context, and what soil properties should be targeted to achieve both the agronomic and environmental goals of wine grape producers. Conservation practices lead to increases in soil organic matter which may improve soil water retention, and increase soil C content therefore constituting a potential avenue to adapt to droughts and sequester C. Well-known management practices such as the use of cover crops, compost or no-till, although effective, seem to result in highly variable outcomes in soil organic matter and other soil health indicators. This variability is likely associated to the application of the practices in different soils and climates. Thus, integration of soil health building practices needs a thorough understanding of their efficacy under different conditions. Furthermore, additions of soil organic matter could trigger emissions of CO2 and N2O, a potent greenhouse gas that could represent a potential tradeoff of soil conservation practices. Finally, nutrient and water availability may be affected by the increase in soil organic matter having consequences for vine balance and grape quality.

Dialing in grapevine water stress indicators to better reflect holistic stress responses

Current remote sensing strategies rely heavily on reflectance data and energy balance modelling using thermal imagery to estimate crop water use and stress. These approaches show great promise for driving precision management decisions, but still require work to better understand how detected changes relate to meaningful physiological changes. Under water stress, grapevines exhibit a range of responses involving both biological and physical changes within leaves and canopies.

The influence of tertiary and quaternary deposits on the viticultural potential of the terroirs to be found in Geneva, Switzerland

The 1365 ha of the Genevese vineyard are located at the south-western corner of the Swiss plateau, between 395m and 505 m altitude.

Nutrients and heavy metals in a vineyard soil under organic, biodynamic and conventional management

Promoting sustainable agricultural practices is one of the challenges of the last decades. Organic and biodynamic viticulture can be an alternative to intensive viticulture, furthermore contributing to reduction of impact on environment and human health and guaranteeing soil preservation and quality products1. The aim of this experimentation was to evaluate the medium and long-term effects of different agronomic practices in viticulture on nutrient availability and heavy metal accumulation in soil.