Macrowine 2021
IVES 9 IVES Conference Series 9 Optimization of a tool to determine the oxygen avidity of a wine through the kinetics of consumption by its phenolic and aromatic fractions (PAFs)

Optimization of a tool to determine the oxygen avidity of a wine through the kinetics of consumption by its phenolic and aromatic fractions (PAFs)

Abstract

AIM: Wine oxidation phenomena during the different processes of winemaking, aging and storage are closely related to the presence of oxygen and to the wine’s capacity for consumption. Grape composition will be directly related to wine composition, defining the O2 consumption rate, with particular importance of phenolic compounds and metal ions content. The prediction of the O2 consumption capacity of a wine could be a great tool to help in decision making during the winemaking process. The objetive of this work was the optimization of the reactivation of phenolic and aromatic fractions of grapes (PAFs) for the study of their avidity to consume oxygen. Beside, the effect of alcohol, pH, acetaldehyde and the metals Fe, Cu and Mn has been studied.

METHODS: Different PAFs reactivated under 16 different conditions defined by different levels of pH, alcohol content, acetaldehyde, iron, Cu and Mn were subjected to an oxygen consumption kinetic after saturation with air (1,2).

RESULTS: The parameters defining the kinetics of consumption allowed us to differentiate the different types of grapes. The greatest discriminatory capacity were the parameters related to the amount of oxygen consumed and the time invested in consuming this amount of oxygen, especially in the first stages or the time required to consume the 10% available oxygen, the area under the curve or the time to reach half-area. Thus, the lower iron content facilitated oxygen consumption, requiring less time, and similar results were found with respect to the presence of Mn.

CONCLUSIONS

The best activation conditions of phenolic and aromatic fractions have been established for the evaluation of different PAFs by developing their oxygen consumption kinetics.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Marioli Alejandra, Carrasco-Quiroz

Dpt. Química Analítica, UVaMOX-Group, Universidad de Valladolid, Avda. Madrid, 50, 34004 Palencia, Spain,Rosario, SANCHEZ-GOMEZ Dpt. Química Analítica, UVaMOX-Group, Universidad de Valladolid, Avda. Madrid, 50, 34004 Palencia, Spain  Ignacio NEVARES, Dpt. Ingeniería Agrícola y Forestal, UVaMOX-Group, Universidad de Valladolid, Avda. Madrid, 50, 34004 Palencia, Spain Ana MARTINEZ-GIL Dpt. Química Analítica, UVaMOX-Group, Universidad de Valladolid, Avda. Madrid, 50, 34004 Palencia, Spain María Del ALAMO-SANZA, Dpt. Química Analítica, UVaMOX-Group, Universidad de Valladolid, Avda. Madrid, 50, 34004 Palencia, Spain

Contact the author

Keywords

PAFs, activation factors, oxygen consumption kinetics parameters, oenological parameters

Citation

Related articles…

Combined use of Lachancea thermotolerans and Schizosaccharomyces pombe in winemaking

Commercial red wines use the malolactic fermentation process to ensure stability from a microbiological point of view. In this second fermentation, malic acid is converted into L-lactic acid under controlled steps.

Polyphenols in kombucha: Metabolomic analysis of biotransformations during fermentation

Kombucha is a non-alcoholic beverage made of sugared tea that is transformed by a symbiotic consortium of yeasts and bacteria. This beverage is increasingly produced at industrial scale, but its quality standards remain to be defined. Metabolomics analysis was carried out using FT-ICR-MS to understand the chemical transformations induced by the production phases and the type of tea on

Integrative grape to wine metabolite analyses to study the vineyard “memory” of wine

Wine production is a complex multi-step process and the end-product is not easily defined in terms of composition and quality due to the diversity of the raw materials (grapes) and the biological agents (yeast and bacteria) used/present during the fermentation. Furthermore, linking what happens in the vineyard to the wine fermentation and ultimately to characteristics in the wine during ageing

Flor yeast diversity and dynamics in biologically aged wines

Wine biological aging is characterized by the development of yeast strains that form a biofilm on the wine surface after alcoholic fermentation. These yeasts, known as flor yeasts, form a velum that protects the wine from oxidation during aging. Thirty-nine velums aged from 1 to 6 years were sampled from “Vin jaune” from two different cellars. We show for the first time that these velums possess various aspects in term of color and surface aspects. Surprisingly, the heterogeneous velums are mostly composed of one species, S. cerevisiae. Scanning electron microscope observations of these velums revealed unprecedented biofilm structures and various yeast morphologies formed by the sole S. cerevisiae species.

A fast and sensitive method for total tannin determination in wine based on the substoichiometric quenching of silicon-rhodamine conjugates

Tannins are chemically diverse polyphenols contributing to important sensory attributes of food and beverages. In wine, their structure and quantity depend on several factors, such as the grape variety, climate, soil, viticultural and enological practices and the wine-aging process.