Macrowine 2021
IVES 9 IVES Conference Series 9 Optimization of a tool to determine the oxygen avidity of a wine through the kinetics of consumption by its phenolic and aromatic fractions (PAFs)

Optimization of a tool to determine the oxygen avidity of a wine through the kinetics of consumption by its phenolic and aromatic fractions (PAFs)

Abstract

AIM: Wine oxidation phenomena during the different processes of winemaking, aging and storage are closely related to the presence of oxygen and to the wine’s capacity for consumption. Grape composition will be directly related to wine composition, defining the O2 consumption rate, with particular importance of phenolic compounds and metal ions content. The prediction of the O2 consumption capacity of a wine could be a great tool to help in decision making during the winemaking process. The objetive of this work was the optimization of the reactivation of phenolic and aromatic fractions of grapes (PAFs) for the study of their avidity to consume oxygen. Beside, the effect of alcohol, pH, acetaldehyde and the metals Fe, Cu and Mn has been studied.

METHODS: Different PAFs reactivated under 16 different conditions defined by different levels of pH, alcohol content, acetaldehyde, iron, Cu and Mn were subjected to an oxygen consumption kinetic after saturation with air (1,2).

RESULTS: The parameters defining the kinetics of consumption allowed us to differentiate the different types of grapes. The greatest discriminatory capacity were the parameters related to the amount of oxygen consumed and the time invested in consuming this amount of oxygen, especially in the first stages or the time required to consume the 10% available oxygen, the area under the curve or the time to reach half-area. Thus, the lower iron content facilitated oxygen consumption, requiring less time, and similar results were found with respect to the presence of Mn.

CONCLUSIONS

The best activation conditions of phenolic and aromatic fractions have been established for the evaluation of different PAFs by developing their oxygen consumption kinetics.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Marioli Alejandra, Carrasco-Quiroz

Dpt. Química Analítica, UVaMOX-Group, Universidad de Valladolid, Avda. Madrid, 50, 34004 Palencia, Spain,Rosario, SANCHEZ-GOMEZ Dpt. Química Analítica, UVaMOX-Group, Universidad de Valladolid, Avda. Madrid, 50, 34004 Palencia, Spain  Ignacio NEVARES, Dpt. Ingeniería Agrícola y Forestal, UVaMOX-Group, Universidad de Valladolid, Avda. Madrid, 50, 34004 Palencia, Spain Ana MARTINEZ-GIL Dpt. Química Analítica, UVaMOX-Group, Universidad de Valladolid, Avda. Madrid, 50, 34004 Palencia, Spain María Del ALAMO-SANZA, Dpt. Química Analítica, UVaMOX-Group, Universidad de Valladolid, Avda. Madrid, 50, 34004 Palencia, Spain

Contact the author

Keywords

PAFs, activation factors, oxygen consumption kinetics parameters, oenological parameters

Citation

Related articles…

Legacy of land-cover changes on soil erosion and microbiology in Burgundian vineyards

Soils in vineyards are recognized as complex agrosystems whose characteristics reflect complex interactions between natural factors (lithology, climate, slope, biodiversity) and human activities. To date, most of the unknown lies in an incomplete understanding of soil ecosystems, and specifically in the microbial biodiversity even though soil microbiota is involved in many key functions, such as nutrient cycling and carbon sequestration. Soil biological properties are indicative of soil quality. Therefore, understanding how soil communities are related to soil ecosystem functioning is becoming an essential issue for soil strategy conservation. Here, we propose to assess the importance of land-cover history on the present-day microbiological and physico-chemical properties. The studied area was selected in the Burgundian vineyards (Pernand-Vergelesses, Burgundy, France) where land occupation has been reconstructed over the last 40 years. Soil samples were collected in five areas reflecting various land cover history (forest, vineyards, shifting from forest to vineyards). For each area, physico-chemical parameters (pH, C, N, P, grain size) were measured and DNA was extracted to characterize the abundance and diversity of microbial communities. The obtained results show significant differences in the five areas suggesting that present-day microbial molecular biomass and bacterial taxonomic is partly inherited from past land occupation. Over longer period of time, such study of land-uses legacies may help to better assess ecosystem recovery and the impact of management practices for a better soil quality and vineyards sustainability.

Impact of drought stress on concentration and composition of wine proteins in Riesling

Protein haze in white wines is a major technological and economic problem of the wine industry. Field tests were carried out in steep slope vineyards planted with Riesling grapes over 3 dry growing seasons to study the effect of drought stress on the concentration of proteins in the resulting wines. Plots suffering from drought stress were compared with surrounding drip irrigated plots. Riesling grapes were processed into wines by conventional procedures. Protein amounts of the isolated wine colloids of the stressed samples were always higher than those of the watered samples(mean watered 13.8 ± 0.44, mean stressed 17.4 ± 0.40 g 100 g-1). As a consequence, higher bentonite doses were needed to achieve protein haze stability of the drought stressed treatments.

Overhead spray water treatment as a mitigation strategy for reducing vine stress and preserving grape quality during heatwaves

Changes in climate have been influencing the quality of wine grapes worldwide. The impact of extreme climate events over short periods is increasingly recognized as a serious risk to grape quality and yield quantity. In this study the mitigation effects of a pulsed water spray on vine canopy during heatwave events has been evaluated for maintaining vine condition during the growing season and grape quality. Vines of three varieties (Malbec, Bonarda, and Syrah) under drip irrigation in the UNCuyo experimental vineyard were treated with an overhead pulsed water spray.

Water status modelling: impact of local rainfall variability in Burgundy (France)

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Effect of ozone application for low-input postharvest dehydration of wine grapes

The postharvest dehydration of grapes is a traditional practice to obtain wines with unique traits (e.g., sweet, dry/reinforced).