Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of mannoproteins structural features on the colloid stability when facing different kinds of wine polyphenols

Impact of mannoproteins structural features on the colloid stability when facing different kinds of wine polyphenols

Abstract

The aim was to study the impact of structural features in the polysaccharide moiety of mannoproteins on their interaction with polyphenols and the formation of colloidal aggregates. To this end, mannoproteins fractions were extracted from four different yeast strains: a commercial enological strain (MP-com), the wild-type BY4742 strain (MP-WT) and its mutants ΔMnn4 (MP-Mnn4) and ΔMnn2 (MP-Mnn2). The Mnn4p and Mnn2p are responsible for mannosyl-phosphorylation and branching of the N-glycosylation backbone [1]. Enzymatic extraction was performed using a commercial Endo-beta-1,3-Glucanase of Trichoderma sp. (E-LAMSE, Megazym)[2]. Mannoprotein fractions were thoroughly characterized by composition of their polysaccharide and protein moieties, branching degree, net charge, molecular weight distribution, static and dynamic molecular parameters [3]. Their interactions with seed tannins and a pool of red wine polyphenols and the formation of colloidal aggregates were studied in model solutions at different polyphenol/mannoprotein ratios through Dynamic Light Scattering (DLS). Model solutions were followed during one month. The number and size distribution of colloidal aggregates was determined by Nanoparticle Tracking Analysis (NTA).The four Mannoprotein fractions had broad and high molecular weight distributions, as well as similar protein, polysaccharide mass % and amino acid composition. However, they showed different proportions of mannose and glucose and the structural characterization of the polysaccharide moiety confirmed the expected differences between MP-WT, MP-Mnn2, and MP-Mnn4. DLS and NTA experiments indicated a two-step interaction process between seed tannins and mannoproteins: an immediate formation of colloidal aggregates (150-300 nm), followed by a very progressive evolution related to a reversible aggregate flocculation. The number, dispersity and extent of flocculation were dependent on the tannin/MP ratio. So far, no notable differences were evidenced between the four MP fractions. With the polyphenol pool of red wine, neither DLS nor NTA experiments were able to evidence the formation of colloidal aggregates. This does not mean that interactions do not exist[4,5]. Although the mannoproteins used had different polysaccharide compositions, structures, and properties, no difference in terms of colloidal behavior when in solution with tannins or wine polyphenols was evidenced by the methods applied. Thus, neither the absence of mannosyl phosphate groups (MP-Mnn4) nor the absence of branching of the outer chains of the N-glycosylated carbohydrate structures (MP-Mnn2) seems to play a determining role in the colloidal behavior of mannoproteins in the presence of seed tannins or red wine polyphenols.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Saul Assunção Bicca

UMR-SPO, University of Montpellier, INRAE, Montpellier Supagro, Montpellier, France,Thierry, DOCO, UMR-SPO, University of Montpellier, INRAE, Montpellier Supagro, Montpellier, France Céline, PONCET-LEGRAND, UMR-SPO, University of Montpellier, INRAE, Montpellier Supagro, Montpellier, France Pascale, WILLIAMS, UMR-SPO, University of Montpellier, INRAE, Montpellier Supagro, Montpellier, France Julie MEKOUE N’GUELA, UMR-SPO, University of Montpellier, INRAE, Montpellier Supagro, Montpellier, France & Lallemand SAS, Blagnac, France Aude VERNHET, UMR-SPO, University of Montpellier, INRAE, Montpellier Supagro, Montpellier, France

Contact the author

Keywords

mannoproteins, colloidal stability, wine interactions

Citation

Related articles…

Saccharomyces cerevisiae intraspecies differentiation by metabolomic signature and sensory patterns in wine

AIM: The composition and quality of wine are directly linked to microorganisms involved in the alcoholic fermentation. Several studies have been conducted on the impact of Saccharomyces cerevisiae on volatile compounds composition after fermentation. However, if different studies have dealt with combined sensory and volatiles analyses, few works have compared so far the impact of distinct yeast strains on the global metabolome of the wine.

Oospore germination dynamics and disease forecasting model for a precision management of downy mildew 

Downy mildew, caused by Plasmopara viticola, is the most economically impactful disease affecting grapevines. This polycyclic pathogen triggers both primary and secondary infection cycles, resulting in significant yield losses when effective disease control measures are lacking. Over the winter, the pathogen survives by forming resting structures, the oospores, derived from sexual reproduction, which produce the inoculum for primary infections. To optimize grapevine downy mildew control and obtain the desired levels of production while minimizing chemical inputs, it is crucial to optimize the timeframe for fungicide application. Disease forecasting models are useful to identify the infection risk.

The effect of ultrasounds in syrah wine quality is not dependent on the ripening or sanitary status of the grapes

Different studies have demonstrated that the application of ultrasounds (US) to crushed grapes improves chromatic characteristics of the wines (1,2), increases their polysaccharide content (3) and some aroma compounds are also favored (4,5)

A novel dataset and deep learning object detection benchmark for grapevine pest surveillance

Flavescence dorée (FD) stands out as a significant grapevine disease with severe implications for vineyards. The American grapevine leafhopper (Scaphoideus titanus) serves as the primary vector, transmitting the pathogen that causes yield losses and elevated costs linked to uprooting and replanting. Another potential vector of FD is the mosaic leafhopper, Orientus ishidae, commonly found in agroecosystems. The current monitoring approach involves periodic human identification of chromotropic traps, a labor-intensive and time-consuming process.

Ageing of Sauvignon Blanc white wines with Specific Inactivated Dry Yeasts: Effect on physical and chemical characteristics

Del Barrio-Galán, R.a, b, Gómez-Parrini, A.a, Peña-Neira, A.b a Lallemand Inc. Chile y Compañía Limitada, Rosario Norte 407, piso 6, Las condes, Santiago, Chile b Department of Agro-Industry and Enology, Faculty of Agronomical Sciences, University of Chile, Post Office Box 1004, Santa Rosa 11315, La Pintana, Santiago, Chile It is well known that polysaccharides, mainly mannoproteins, play an important role on physical, chemical and sensory quality of wines. The ageing of white wines on lees is used in order to release higher amounts of polysaccharides by the autolytic processes in order to obtain higher-quality wines. However, this technique is too slow, because the temperature and pH conditions are not the most suitable for this process. In addition, it can also involve certain disadvantages such as a greater demand on winery resources, a longer period of wine storage, the appearance of reduction notes and some microbiological alterations.