Macrowine 2021
IVES 9 IVES Conference Series 9 Mixed starters Schizosaccharomyces japonicus/Saccharomyces cerevisiae as a novel tool to improve the aging stability of Sangiovese wines

Mixed starters Schizosaccharomyces japonicus/Saccharomyces cerevisiae as a novel tool to improve the aging stability of Sangiovese wines

Abstract

AIM: In the present work Schizosaccharomyces japonicus and Saccharomyces cerevisiae were inoculated simultaneously or in sequence in mixed fermentation trials with the aim of testing their ability to improve the overall quality of red wine, in particular of Sangiovese wine.

METHODS: The impact of simultaneous and sequential inoculations on growth and fermentation kinetics and on the analytical and sensory profiles of the experimental wines was evaluated at the end of the alcoholic fermentation and 24 months after bottling with standard methods.

RESULTS: S. japonicus affected S. cerevisiae growth and fermentative capability only in the sequential fermentation. The experimental wines produced with S. japonicus and S.cerevisiae in simultaneous and sequential mixed fermentation reached concentrations of total polysaccharides respectively two- and three-fold greater than those obtained with pure cultures of S.cerevisiae. Moreover, the non-Saccharomyces yeast modulated the concentration of some of the most important wine volatile compounds. At the end of the alcoholic fermentation, ethyl acetate was significantly higher in the mixed fermentation wines in respect to the level acceptable for a young red wine. However, this metabolite underwent considerable hydrolysis during the two-years aging in bottle, with a marked decrease in its concentration. In agreement, mixed fermentation wines as compared to the control wines showed no significant differences for the ethyl acetate perception evaluated by sensory analysis carried out 24 months after bottling. Hydrolysis–esterification equilibrium in mixed fermentation wines caused an increase of acetate esters compounds responsible for fruity aroma. These ester compounds reached significantly higher concentrations in both mixed fermentation wines than in the control wine inoculated with S. cerevisiae. Moreover, all mixed fermentation wines were perceived as having lower mouthfeel sensation of astringency compared to those obtained with S. cerevisiae, possibly due to the higher polysaccharides content.

CONCLUSIONS

Based on the evidence that after 2 years of aging, mixed fermentation wines presented an increase in color stability and the concentration of fruity aroma and a decrease in astringency, the combined utilization of Sch. japonicus and S. cerevisiae might represent an innovation for the improvement of the aging stability of Sangiovese wine.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Paola Domizio

Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy),Lorenzo Portaro, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Francesco MAIOLI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Valentina CANUTI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Monica PICCHI, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Livio Lencioni, Department of Agricultural, Food, Environmental, and Forestry Sciences and Technologies – University of Florence, via Donizetti, 6 – 50144 Firenze (Italy)  Ilaria Mannazzu, Department of Agriculture, University of Sassari, Viale Italia 39, 07100 Sassari (Italy)

Contact the author

Keywords

wine stability, wine aging, wine aroma, schizosaccharomyces japonicus, mixed fermentation

Citation

Related articles…

The future of DMS precursors during alcoholic fermentation: impact of yeast assimilable nitrogen levels on the contents of DMSp in young wines

Some red wines develop a “bouquet” during ageing. This complex aroma is linked to quality by wine tasters1. The presence of dimethylsulfide (DMS) in those wines is implicated

Monitoring small-scale alcoholic fermentations using a portable FTIR-ATR spectrometer and multivariate analysis

Although some wine production processes still rely on post-production evaluation and off-site laboratory analysis, the new winemaking industry is aware of a need for a better knowledge of the process to improve the properties of the final product. Thus, more and more wineries are interested in incorporating quality-by-design (QbD) strategies instead of postproduction testing because of the possibility to early detect deviations in fermentation or any other wine process. This would allow to detect unwanted situations and eventually to ‘readjust’ the process, thus minimizing rejects.

Bio-based fertilisers from fruit and vegetable residues for improving soil fertility and vine status in degraded vineyards

The H2020 RUSTICA project aims to propose, demonstrate, and implement technical solutions to convert organic residues from fruit and vegetables into high-quality novel bio-based fertilisers (BBF).

Towards an ecological architecture inspired by underground cellars: An example of the thermal inertia of Moldovan underground cellars and new geothermal and Canadian well approaches

The search for underground shelters is one of the oldest forms of human habitation, providing refuge in extreme environments such as deserts and polar regions.

IMPACT OF GRAPE-ASSOCIATED MOLDS IN FRESH MUSHROOM AROMA PRODUCTION

Mycobiota encountered from vine to wine is a complex and diversified ecosystem that may impact grape quality at harvest and the sensorial properties of wines, thus leading to off-flavors [1-3]. Among known off-flavors in wine, fresh mushroom aroma (FMA) has been linked to some mold species, naturally pre-sent on grapes, producing specific volatile organic compounds (VOC) [4-5]. The most well-known are 1-octen-3-ol and 1-octen-3-one, although many other VOC are likely involved. To better understand the FMA defect, biotic and abiotic factors impacting growth kinetics and VOC production of selected fungal species in must media and on grapes were studied.