Macrowine 2021
IVES 9 IVES Conference Series 9 Impact of closures on aroma of godello and torrontés white wines post-bottling

Impact of closures on aroma of godello and torrontés white wines post-bottling

Abstract

Aromatic composition contributes mainly to the quality aroma of white wine. A natural and gradual evolution of the aroma in the bottle occurs over storage with a very low oxygen content. During storage, volatile compounds change as a result of the occurrence of numerous reactions. These chemical and physical processes are influenced by the type and quality of the closures, storage conditions (temperature, light exposure or relative humidity), packaging, etc. [1]. Traditional winemaking mostly uses cork closure, but new natural or synthetic closures have been reported as solution to eliminate some disadvantages of natural corks and can be suppose an alternative stoppers for the wine industry [2]. Several studies have evaluated the impact of different closures on the aroma of some white wine varieties, such as Chardonnay [3], Semillon [4], Sauvignon blanc [5], Verdejo [6], etc. This study aimed to show that the evolution of wine aroma attributes of two white varieties stopped with different closures after two years of bottle storage. Unwooded Godello and Torrontés wines from 2013 vintage were sourced from the same winery. In 2014-may, industrial wines were fractioned in 750 mL transparent glass bottles and closed with three different closures: Natural cork, micro-agglomerated cork and synthetic stopper. Bottled wines were stored in darkness at low temperature (10-15 °C) during 2 years. Sampling was performed at 12, 18, 24 and 30 months after vintage. Wine samples were extracted, in triplicate, with dichloromethane and the organic phase was dried over anhydrous sodium sulphate prior to analysis by gas chromatography with flame ionization detection (GC-FID) or coupled with mass spectrometry (GC-MS) [7]. Compounds identification was based on the comparison with authentic reference standards. Fifteen days after chemical analysis, wines were evaluated by sensory descriptive analysis with 7-10 trained judges. Sensory odorant attributes (floral, fruity, grass, spicy, woody, sulfurous and caramel) were punctuated on an 0-10 scale. Mouthfeel sensations and odorant descriptors were also evaluated globally, as well the global punctuation for the wine overall quality.Wines from the two varieties showed different aromatic profiles, but their evolution during bottle-storage were similar. As expected, the chemical evolution was characterised by decreases of the acetates and ethyl esters contents, and increases of other volatile compounds such as diethyl succinate or volatile phenols [7]. Changes in sensory evaluation were also took place, altering the sensory profile of both wines, changing from fruity and floral notes (higher in November-2015, third sampling) to toasty and spicy nuances. The preference of type of closure was different according to the storage-time. For this reason, the choice of closure type is crucial to preserve the wine aroma quality and to predict their shelf life.

DOI:

Publication date: September 14, 2021

Issue: Macrowine 2021

Type: Article

Authors

Elena Falqué

Depto. Química Analítica y Alimentaria, Universidade de Vigo, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain,Kelly Bello-Novo1, Iván Vázquez-Pateiro1, José Manuel Mirás-Avalos2  1 Depto. Química Analítica y Alimentaria, Universidade de Vigo, Facultade de Ciencias, As Lagoas s/n, 32004 Ourense, Spain  2 Unidad de Suelos y Riegos (Asociada a EEAD-CSIC), Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, 50059 Zaragoza, Spain.

Contact the author

Keywords

bottle storage, closure, white wine, aroma

Citation

Related articles…

Valorization of grapevine leaves: screening of polyphenol composition in 50 cultivars

Grapevine leaves are known to contain different polyphenols such as flavonols, catechins and stilbenes, which are known to act as main contributors for plant defense against pathogens (1). While the composition for some major cultivars has been studied, there is lack of systematic comparison about the content of these compounds in the wide ecodiversity of Vitis vinifera cv. Recent advances in Mass Spectrometry-based Metabolomics allow a wider and more sensitive description of these polyphenols, as instance of those present in leaves (2). Such information could help to better explain leaf traits regarding the development of the leaf or to the plant tolerance to a pathogen. Moreover, these compounds offer appealing applications for human health due to their antioxidant activities.

Effects of winemaking practices on Pinot blanc quality

Two winemaking processes for Pinot blanc were investigated following the chemical and sensory profiles for 12 months, aiming at: i) determining the chemical and sensory profiles

Climatic requirements for optimal physiological processes: a factor in viticultural zoning

Les profils climatiques appropriés pour une activité photosynthétique optimale de la vigne sont déterminés dans différentes régions d’Afrique du Sud et localités à l’intérieur d’une région particulière.

THE EFFECT OF BENTONITE FINING ON THE VOLATILE AND NON-VOLATILE PROFILE OF ITALIAN WHITE WINES

Marselan wines have an unusual high proportion of seed derived tannins from grapes having high proportions of skins, which are rich in tannins. But the causes behind this characteristic have not yet been identified. In vintage 2023 wines were made at experimental scale (9 kg by experimental unit) from Arinarnoa, Marselan and Tannat Vitis vinifera grape cultivars by traditional maceration, and by techniques aimed to increase the wine content in skin derived tannin: addition of extraction enzymes, addition at vatting of grape-skin enological tannins, or by extended maceration, known to increase the seed derived tannin contents of wines. Macerations were of 7 days, except in the extended macerations that were of 15 days.

OPTIMISATION OF THE AROMATIC PROFILE OF UGNI BLANC WINE DISTILLATE THROUGH THE CONTROL OF ALCOHOLIC FERMENTATION

The online monitoring of fermentative aromas provides a better understanding of the effect of temperature on the synthesis and the loss of these molecules. During fermentation, gas and liquid phase concentrations as well as losses and total productions of volatile compounds can be followed with an unprecedented acquisition frequency of about one measurement per hour. Access to instantaneous production rates and total production balances for the various volatile compounds makes it possible to distinguish the impact of temperature on yeast production (biological effect) from the loss of aromatic molecules due to a physical effect³.