Future scenarios for viticultural climatic zoning in Europe

Abstract

Climate is one of the main conditioning factors of winemaking. In this context, bioclimatic indices are a useful zoning tool, allowing the description of the suitability of a particular region for wine production. In this study, we compute climatic indices for Europe, characterize regions with different viticultural aptitude, and assess possible variations in these regions under a future climate conditions using a state-of-the-art regional climate model. The indices are calculated from climatic variables (mostly daily temperatures and precipitation) obtained from the regional climate model COSMO-CLM for recent and future climate conditions. Maps of theses indices for recent decades (1961-2000) and for the XXI century (following the SRES A1B scenario) are considered to identify possible changes. Results show that climate change is projected to have a significant negative impact in wine quality by increased dryness and cumulative thermal effects during growing seasons in Southern European regions (e.g. Portugal, Spain and Italy). These changes represent an important constraint to grapevine growth and development, making crucial adaptation/mitigation strategies to be adopted. On the other hand, regions of western and central Europe (e.g. southern Britain, northern France and Germany) will benefit from this scenario both in wine quality, and in new potential areas for viticulture. This approach provides a macro-characterization of European areas where grapevines may preferentially grow, as well as their projected changes, and is thus a valuable tool for viticultural zoning in a changing climate.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

A. C. Malheiro (1), J. A. Santos (1), H. Fraga (1), J. G. Pinto (2)

1) Centre for Research and Technology of Agro-Environment and Biological Sciences (CITAB), University of Trásos-Montes e Alto Douro, 5001-801 Vila Real, Portugal
(2) Institut für Geophysik und Meteorologie, Universität zu Köln, Kerpener Str. 13, 50923 Köln, Germany

Contact the author

Keywords

Viticultural zoning, scenarios, Europe, climate change, CLM

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Application of organic carbon status indicators on vineyard soils: the case study of DOC Piave (Veneto region, Italy)

According to the Kyoto Protocol objectives, it’s necessary to identify alternative carbon dioxide sinks, and vineyard soils could be a significant opportunity.

Kinetic study of browning caused by laccase activity using different substrates

To our knowledge all the studies about laccase kinetics and its inhibition have been performed with substrates and conditions very different from those of real grape juice. Moreover, none of these researches really measure enzymatic browning, since they have not taken into account what happens after the oxidation of o-diphenols in o-diquinones and their subsequent polymerization to form melanins1. For that reason, the aim of this research was to develop a new model to measure the kinetics of browning caused by Botrytis cinerea laccase under conditions much closer to those of grape juice and using the substrates naturally present in it.

Terroir, sol et sous-sol : principes de modélisation spatiale de quelques paramètres physiques caractérisant le substrat altéré dans les régions viticoles établies sur socle ancien

For several years, the development of computer resources, and in particular of Geographic Information Systems, have allowed the emergence of a new approach to the analysis and characterization of wine-growing areas (Morlat, 1989; Laville, 1990). These methods, which make it possible to identify homogeneous areas or units of terroir, are based on crossing, statistical analysis (in particular Principal Component Analysis: PCA) and the integration of parameters describing the natural environment in which develop the vine.

An infrared laser sensor to characterize the gaseous headspace of champagne glasses under static and swirling conditions

Right after the pouring of champagne in a glass, thousands of rising and bursting bubbles convey gas-phase CO2 and volatile organic compounds in the headspace above the champagne surface, thus progressively modifying the gaseous chemical space perceived by the consumer [1]

Viticultural zoning using spatial analysis: characterizing terroirs over the Southern part of the Côtes-du-Rhône appellation (France)

Les approches du terroir en tant qu’entité géographique (zonages) connaissent un développement accru récent en lien avec l’essor des SIG. Les méthodes, les objectifs et les critères utilisés varient considérablement selon les études.