Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Historic and future climate variability and climate change: effects on vocation, stress and new vine areas (T2010) 9 Effect of vine nitrogen status on grape and wine quality: Terroir study in the Vaud vineyard (Switzerland)

Effect of vine nitrogen status on grape and wine quality: Terroir study in the Vaud vineyard (Switzerland)

Abstract

This study was conducted on soil-climate-plant relations (terroir) and their impact on grape composition and wine quality in the canton of Vaud by Agroscope Changins-Wädenswil ACW. An assessment of the vine nitrogen status on different terroirs was made by means of chlorophyll index, leaf nitrogen content and yeast assimilable nitrogen. Vine nitrogen status was observed to be highly related to soil type. Vines on the soil type “bottom moraines” showed lower vigour, smaller berries and a lower nitrogen status. Sensory analysis discriminated wines from different soil types. Vine nitrogen status through yeast assimilable nitrogen turned out to be strongly correlated with wine positive sensory descriptors and negatively correlated to wine astringency. In our study, the main environmental factors influencing vine development and wine quality was the soil type via its effect on vine nitrogen level. Our results confirm the role on nitrogen supply in grape and wine quality and underline nitrogen as a key factor in understanding the terroir effect.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

J-S Reynard, V. Zufferey, F. Murisier

Agroscope Changins-Wädenswil ACW, CH-1260 NYON, Switzerland

Contact the author

Keywords

Soil component of terroir, vine nitrogen status, ecophysiology, grape and wine quality

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Autochthonous yeasts: a microbiological tool to exalt the quality of the apulian sparkling wine

The selection, characterization, and recruitment of autochthonous yeast strains to drive the alcoholic fermentation process is a highly researched practice because it allows the differentiation of the organoleptic properties of wines, assuring process standardization, reducing fermentation times and improving the quality and safety of the final products [1, 2]. Sparkling wines are “special wines” obtained by secondary fermentation of the base wine. ​In the traditional method (Champenoise method), the re-fermentation takes place in the bottle after the addition to the base wine of the so-called tirage solution. This step, also known as prise de mousse, is followed by an aging period characterized by the release of compounds from the yeast cells that affect the organoleptic properties of the final product. The use of autochthonous yeasts as starter cultures for secondary fermentation is one of the recent innovations proposed to enhance and differentiate these wines’ sensory quality [3,4]. Apulia is the second Italian wine-producing region, and its productive chain is now going through a qualitative evolution by implementing the employment of innovative approaches to exalt the peculiar properties of regional wines.

Towards adaptation to climate change in Rioja: Quality evaluation of wines obtained from Grenache x Tempranillo selections

The wine sector is of great relevance and tradition in Mediterranean countries, however, it may be most susceptible to climate change. In recent years, wine production is facing changes worldwide, both at environmental as well as commercial levels, due to global warming and the shift in consumers’ preferences. Wine growers and wine makers are in search of solutions that allow to face these new challenges. One of the most promising initiatives in the long term is the introduction of new plant materials, specifically intraspecific hybridizations between premium varieties that may improve traditional germplasm in its adaptation to climate change. These inter-varietal crosses have the potential to generate quality wines, whilst maintaining the regional typicity, and constitute an attractive alternative for the consumer due to their sensory attributes. In this study, we have evaluated wines from 29 intraspecific Garnacha x Tempranillo hybrids in two different locations, with the aim to assess their oenological potential and sensory attributes. Thirteen of the selections were white and 16 were red. Microvinifications were conducted with two or three replications depending on grape availability. Conventional oenological parameters were determined for all wines. The sensory evaluation and hedonic scores were given by five experts. Red selections obtained higher quality scores than white ones. Among the white selections with higher quality scores, GT-41 Varea and GT-159 Varea outstand, due to their high total acidity and high malic acid content. Regarding red selections, GT-57 Varea and GT-57 UR were perceived as higher in quality, highlighted for their moderate alcoholic and high anthocyanin content. Our results indicate that intraspecific hybridization may be a powerful tool for adapting traditional cultivars to climate change in Rioja.

Caractérisation des productions vitivinicoles des terroirs du Barolo (Piemonte, Italie)

La Région Piemonte a commencé en 1994 un projet de caractérisation des productions vitivinicoles des terroirs du Barolo (Piemonte, Italie) par une équipe pluridisciplinaire avec la participation de 6 Instituts de recherche qui travaillent dans la Région et la collaboration de 2 Associations des producteurs viticoles et des organismes de valorisation du vin Barolo.

Correlative study between degradation of rosé wine under accelerated conditions and under normal conditions

Several studies have tried to develop different methods to study the photodegradation of wine in an accelerated way, trying to elucidate the effect of light on the wine compounds[1]. In a previous study, our team developed a chamber that speeds up the photodegradation of rosé wine[2]. In the present work we have tried to establish a correlation between irradiation times in accelerated conditions and the natural exposure to the cycles of light that usually exist in markets or at home.

Veraison as determinant for wine quality and its potential for climate adapted breeding

The evaluation of new grapevine genotypes regarding their potential to produce high quality wines is the time limiting factor in the process of grapevine breeding. Hence, the development of quality-related markers useable in marker-assisted selection (MAS) as well as in prediction models for this bottleneck trait will tremendously enhance breeding efficiency. In extensive studies a training set of a segregating white wine F1 population (150 F1 genotypes = POP150; `Calardis Musqué´ x `Villard Blanc´) was deeply phenotyped and genotyped for model development and QTL analysis.