Terroir 2010 banner
IVES 9 IVES Conference Series 9 International Terroir Conferences 9 Terroir 2010 9 Geology and Soil: effects on wine quality (T2010) 9 Application of organic carbon status indicators on vineyard soils: the case study of DOC Piave (Veneto region, Italy)

Application of organic carbon status indicators on vineyard soils: the case study of DOC Piave (Veneto region, Italy)

Abstract

According to the Kyoto Protocol objectives, it’s necessary to identify alternative carbon dioxide sinks, and vineyard soils could be a significant opportunity. A set of soil organic carbon status indicators, proposed by JRC (Stolbovoy, 2006), was tested on vineyard soils of DOC Piave area (Veneto region) to validate it. Information available in the regional soil database for the study area (Soil Maps of Treviso and Venice provinces at 1:50,000 scale with 614 soil profiles on about 150,000 ha, 5% of which with vineyards) was analysed to point out significant relationships between soil organic carbon content, soil type and land uses. An approach for functional soil groups was adopted: the soil typological units were grouped on the basis of texture, coarse fragments, drainage and physiography (Manni, 2007). The highest value, which differs statistically from the others, was observed in fine texture and poorly drained soils. Furthermore, vineyard soils showed higher content than crop soils, especially on the first 30 cm. But no significant differences were observed. Then, for each functional group and separately for vineyard and crop topsoil and subsoil, a set of soil organic carbon status indicators were defined. The results showed higher capacity to sequestrate carbon on vineyard topsoil. The present study allows an overview of the DOC Piave area carbon pool and highlights priorities areas where policy interventions should be concentrated.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

G. Manni (1), G. Concheri (1), A. Garlato (2), I. Vinci (2), P. Marcuzzo (3)

(1) Università degli Studi di Padova – Dipartimento di Biotecnologie Agrarie
Viale dell’Università 16, 35020 Legnaro (PD), Italia
(2) ARPAV – Agenzia Regionale per la Prevenzione e Protezione Ambientale del Veneto – Servizio Suoli
Via Santa Barbara 5/a, 31100 Treviso, Italia
(3) Centro di Ricerca per l’Agricoltura-Viticoltura
Via XXVIII Aprile 26, Conegliano (TV), Italia

Contact the author

Keywords

Soil organic carbon, sequestration, vineyard, indicator, functional group

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Environmental sustainability in the production of grappa with the use of mould-resistant grape varieties: the aroma characterisation of distillates

Grappa is the most important italian spirit and its production includes elements of history, tradition, and culture of the transalpine country. In accordance with EU laws, grappa is obtained from the fermentation and distillation of the pomace, eventually added with fermentation lees and water. Grappa is one of the richest fruit distillates in volatile compounds that confer to the product its characteristic flagrance. The aroma is largely due to the volatile compounds present in the raw materials, in particular alcohols, esters and carbonyl compounds formed during the alcoholic fermentation, but also to grape aromas such as terpenols and norisoprenoids, that confers grappa the distinctive floral scents.

Tasting soils in Pinot noir wines of the Willamette valley, Oregon

The conventional wisdom of vintners is that alkalinity, and thus less sour and more rounded taste, are enhanced in wine and grapes challenged by low-nutrient soils.

Drought responses of grapevine cultivars under different environments

Using grapevine genetic diversity is one of the strategies to adapt viticulture to climate change. In this sense, assessing the plasticity of cultivars in their responses to environmental conditions is essential. For this purpose, the drought tolerance of Grenache, Tempranillo and Semillon cultivars grafted onto SO4 was evaluated at two experimental vineyards, one located in Valencia (Spain) and the other in Bordeaux (France). This was done by assessing gas exchange parameters, water relations and leaf hydraulic traits at the end of the season.

Influence of polysaccharide extracts from wine by-products on the volatile composition of sparkling white wines

In the production of sparkling wines, during the second fermentation, mannoproteins are released by yeast autolysis, which affect the quality of the wines. The effect of mannoproteins has been extensively studied, and may affect aroma and foam quality. However, there are no studies on the effect of other polysaccharides such as those from grapes. Considering the large production of waste from the wine industry, it was proposed to obtain polysaccharide-rich extracts from some of these by-products[1].

Reconnaissance des vins de terroir par les consommateurs

Approaching the notion of terroir wines at the level of consumption poses a problem due to the absence of a regulatory definition of the term terroir, which is not taken up either at Community level or at national level (the Consumer Code in particular does not define not the land). However, whatever definition is adopted for the terroir, we can retain at the consumer level an identification of the terroir through the different geographical mentions appearing on the labels or on the shelves of the wine shelf.