Terroir 2010 banner
IVES 9 IVES Conference Series 9 Il Lambrusco reggiano e il territorio di pianura: un modello efficace

Il Lambrusco reggiano e il territorio di pianura: un modello efficace

Abstract

[English version below]

Il caso “Lambrusco” è emblematico di un buon connubio tra un gruppo di vitigni ed un territorio di pianura caratterizzato da suoli fertili e alluvionali, che determinano un elevato sviluppo vegetativo e produttivo delle piante e peculiari risposte qualitative.
In queste particolari condizioni pedoclimatiche, si producono diversi vini “Lambrusco”, a partire dagli omonimi vitigni di origine, legati tra loro dalle comuni origini selvatiche e dal buon grado di parentela, come dimostrato dalle recenti analisi genetiche.
Il vino Lambrusco del territorio di Reggio Emilia, prodotto in varie tipologie, è ottenuto da uvaggi di diversi lambruschi, ed è tipicamente frizzante, caratterizzato da una elevata componente acidica e da profumi freschi e giovani.
La viticoltura reggiana, grazie alla notevole abbondanza sul territorio di antiche varietà, è una viticoltura basata esclusivamente sulla coltivazione di vitigni autoctoni.
Le strutture produttive e di tutela presenti sul territorio, nonché le scelte colturali effettuate, hanno giocato un ruolo importante nel garantire solidità alla produzione e rispondere alle esigenze di mercato, per cui il Lambrusco rappresenta oggi, come già da molti anni, uno dei vini varietali italiani più esportati nel mondo e più importanti del panorama italiano.

“Lambrusco” is a typical example of good relationship between a group of grape cultivars and the territory where they are grown: alluvial plain characterized by fertile soils, stimulating high vigour and yield and characteristic qualitative traits.
In these peculiar soil and climate conditions, well characterized “Lambrusco” wines are produced from homonymous grape cultivars, that are interlinked by common wild origin and high parentage degree, as revealed by recent genetic analysis.
The Lambrusco of Reggio Emilia, obtained from different Lambrusco cultivars, is a typically sparkling red wine, with high acidity and fresh and young fragrances, produced in different types and designations.
Viticulture in Reggio Emilia province is exclusively based on autochthonous cultivars, due to the presence of many ancient grape varieties.
Productive and protection structures in this territory, together with cultivation choices, played and important role in ensuring soundness on production and reliable answers to market needs. As a consequence currently and since many years Lambrusco is one of the most important Italian varietal wines and one of the most exported worldwide.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

S. Meglioraldi, M. Storchi

Consorzio per la tutela dei vini “Reggiano” e “Colli di Scandiano e di Canossa”
Via Gualerzi 8, Reggio Emilia

Contact the author

Keywords

Lambrusco, pianura, fertilità, autoctono, frizzante, mercato
Lambrusco, plain, fertility, autochthonous, sparkling, market

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

Les activités peroxidasiques du raisin de quelques cépages de Roumanie

Les enzymes d’oxydation (polyphénoloxydase, peroxydase) des raisins sont d’origine génétique dépendantes des facteurs climatiques et agrotechniques (Sapis et al, 1983). Dans le processus technologique de l’obtention du moût de raisins, ces enzymes catalysent l’oxydation de certains composés phénoliques naturellement présents dans le raisin, produisant ainsi des modifications indésirables de la couleur et de l’arôme du vin.

Grape solids: new advances on the understanding of their role in enological alcoholic fermentation

Residual grape solids (suspended particles) in white and rosé musts vary depending on the clarification pro-cess. These suspended solids contain lipids (more especially phytosterols) that are essential for yeast meta-bolism and viability during fermentation in anaerobic conditions.

ViniGWAS – improving the selection of climate-resilient grapevine varieties

Climate change and its consequences are becoming an increasing challenge for viticulture. The breeding of new grapevine varieties that are better adapted to the changing conditions offers a possible solution.

Combining effect of leaf removal and natural shading on grape ripening under two irrigation strategies in Manto negro (Vitis vinifera L.)

The increasingly frequent heat waves during grape ripening pose challenges for high quality wine grape production. Defoliation is a common practice that can improve the control of diseases in bunches, but also it increases the exposure to sunlight. Grapes exposed to solar radiation reach temperatures over the optimum for berry development and maturation. This makes the development of irrigation and canopy management techniques of great importance to maximize yield and grape quality. A field experiment was carried out during 2021 using Manto negro wine grapes to study the effect of applied irrigation and different light exposure levels on grape quality. Two irrigation treatments were imposed based on the frequency and amount of water doses in a four-block experimental vineyard at Bodega Ribas (Mallorca). Three light exposure treatments were randomly applied in each irrigation plot. The light treatments included exposed clusters from pea size, non-exposed clusters, and shaded clusters after softening. Leaf area index and canopy porosity was estimated every 2 weeks. Midday leaf water potential was measured weekly. Additionally, apparent electrical conductivity was measured between rows to estimate the soil water content variability. Light and temperature sensors were installed at the bunch level to quantify the differences in bunch temperature and light intensity among treatments. The effect of irrigation and cluster light exposure on berry weight, TSS, TA, malic acid, tartaric acid, K+, and pH were analysed at 5 moments along grape ripening. During different heat waves, the natural shading technique decreased the maximum bunch temperature around 10 °C respect to the exposed bunches in both irrigation strategies. The combination of defoliation and shading techniques after softening decreased TSS at harvest and affected most of the quality parameters during the last stages of ripening, showing an interesting technique to delay ripening in warm viticulture areas.

Genotypic variability in root architectural traits and putative implications for water uptake in grafted grapevine

Root system architecture (RSA) is important for soil exploration and edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The objectives of this study were to determine genetic differences in the root architectural traits and their relationships to water uptake in two Vitis rootstocks genotypes (RGM, 140Ru) differing in their adaptation to drought. Young rootstocks grafted upon the Riesling variety were transplanted into cylindrical tubes and in 2D rhizotrons under two conditions, well watered and moderate water stress. Root traits were analyzed by digital imaging and the amount of transpired water was measured gravimetrically twice a week. Root phenotyping after 30 days reveal substantial variation in RSA traits between genotypes despite similar total root mass; the drought-tolerant 140Ru showed higher root length density in the deep layer, while the drought-sensitive RGM was characterised by shallow-angled root system development with more basal roots and a larger proportion of fine roots in the upper half of the tube. Water deficit affected canopy size and shoot mass to a greater extent than root development and architectural-related traits for both 140Ru and RGM, suggesting vertical distribution of roots was controlled by genotype rather than plasticity to soil water regime. The deeper root system of 140Ru as compared to RGM correlated with greater daily water uptake and sustained stomata opening under water-limited conditions but had little effect on above-ground growth. Our results highlight that grapevine rootstocks have constitutively distinct RSA phenotypes and that, in the context of climate change, those that develop an extensive root network at depth may provide a desirable advantage to the plant in coping with reduced water resources.