Terroir 2010 banner
IVES 9 IVES Conference Series 9 Il Lambrusco reggiano e il territorio di pianura: un modello efficace

Il Lambrusco reggiano e il territorio di pianura: un modello efficace

Abstract

[English version below]

Il caso “Lambrusco” è emblematico di un buon connubio tra un gruppo di vitigni ed un territorio di pianura caratterizzato da suoli fertili e alluvionali, che determinano un elevato sviluppo vegetativo e produttivo delle piante e peculiari risposte qualitative.
In queste particolari condizioni pedoclimatiche, si producono diversi vini “Lambrusco”, a partire dagli omonimi vitigni di origine, legati tra loro dalle comuni origini selvatiche e dal buon grado di parentela, come dimostrato dalle recenti analisi genetiche.
Il vino Lambrusco del territorio di Reggio Emilia, prodotto in varie tipologie, è ottenuto da uvaggi di diversi lambruschi, ed è tipicamente frizzante, caratterizzato da una elevata componente acidica e da profumi freschi e giovani.
La viticoltura reggiana, grazie alla notevole abbondanza sul territorio di antiche varietà, è una viticoltura basata esclusivamente sulla coltivazione di vitigni autoctoni.
Le strutture produttive e di tutela presenti sul territorio, nonché le scelte colturali effettuate, hanno giocato un ruolo importante nel garantire solidità alla produzione e rispondere alle esigenze di mercato, per cui il Lambrusco rappresenta oggi, come già da molti anni, uno dei vini varietali italiani più esportati nel mondo e più importanti del panorama italiano.

“Lambrusco” is a typical example of good relationship between a group of grape cultivars and the territory where they are grown: alluvial plain characterized by fertile soils, stimulating high vigour and yield and characteristic qualitative traits.
In these peculiar soil and climate conditions, well characterized “Lambrusco” wines are produced from homonymous grape cultivars, that are interlinked by common wild origin and high parentage degree, as revealed by recent genetic analysis.
The Lambrusco of Reggio Emilia, obtained from different Lambrusco cultivars, is a typically sparkling red wine, with high acidity and fresh and young fragrances, produced in different types and designations.
Viticulture in Reggio Emilia province is exclusively based on autochthonous cultivars, due to the presence of many ancient grape varieties.
Productive and protection structures in this territory, together with cultivation choices, played and important role in ensuring soundness on production and reliable answers to market needs. As a consequence currently and since many years Lambrusco is one of the most important Italian varietal wines and one of the most exported worldwide.

DOI:

Publication date: December 3, 2021

Issue: Terroir 2010

Type: Article

Authors

S. Meglioraldi, M. Storchi

Consorzio per la tutela dei vini “Reggiano” e “Colli di Scandiano e di Canossa”
Via Gualerzi 8, Reggio Emilia

Contact the author

Keywords

Lambrusco, pianura, fertilità, autoctono, frizzante, mercato
Lambrusco, plain, fertility, autochthonous, sparkling, market

Tags

IVES Conference Series | Terroir 2010

Citation

Related articles…

A methyl salicylate glycoside mapping of monovarietal Italian white wines.

Among the main plant secondary metabolites, glycosides have a key-role in wine chemistry. Glycosides are non-volatile complex composed of a non-sugar component (aglycone) bound to one or more carbohydrates.

Vine-growing zoning of the municipal territories of Ronda and Arriate (Malaga, Spain), « Sierras de Málaga » registered appellation of origin mark

The aim of this communication is the study of the Ronda and Arriate municipal territories environment in order to define and to establish the main physical factors in relation to vine-growing land use. The vine-growing zoning proposed is based on geopedological and climatic features.

Isohydric and anisohydric behavior of 18 wine grape varieties grown in an arid climate

The interest in understanding the water balance of terrestrial plants under drought has led to the creation of the isohydric/anisohydric terminology. The classification was related to an implication-driven framework, where isohydric plants maintain a constant and high leaf water potential through an early and intense closure of their stomata, hence risking carbon starvation. In contrast, anisohydric plants drop their leaf water potential to low values as soil drought is establishing due to insensitive stomata and thus risk mortality through hydraulic failure, albeit maximizing carbon intake. When applied to grapevines, this framework has been elusive, yielding discrepancies in the classification of different wine grape varieties around the world.

Development of the geographic indication vale do São Francisco for tropical wines in Brazil

Aim: Geographical Indications-GI are commonly used to protect territorial products around the world, such as cheese and wine. This qualification is useful because it improves the producer’s organization, protects and valorizes the distinct origin and quality of the product, increases recognition and notoriety, and adds value for products. Tropical wines are mainly produced in Brazil, India,

Co-design and evaluation of spatially explicit strategies of adaptation to climate change in a Mediterranean watershed

Climate change challenges differently wine growing systems, depending on their biophysical, sociological and economic features. Therefore, there is a need to locally design and evaluate adaptation strategies combining several technical options, and considering the local opportunities and constraints (e.g. water access, wine typicity). The case study took place in a typical and heterogeneous Mediterranean vineyard of 1,500 ha in the South of France. We developed a participatory modeling approach to (1) conceptualize local climate change issues and design spatially explicit adaptation strategies with stakeholders, (2) numerically evaluate their effects on phenology, yield and irrigation needs under the high-emissions climate change scenario RCP 8.5, and (3) collectively discuss simulation results. We organized five sets of workshops, with in-between modeling phases. A process-based model was developed that allowed to evaluate the effects of six technical options (late varieties, irrigation, water saving by reducing canopy size, adjusting cover cropping, reducing density, and shading) with various distributions in the watershed, as well as vineyard relocation. Overall, we co-designed three adaptation strategies. Delay harvest strategy with late varieties showed little effects on decreasing air temperature during ripening. Water constraint limitation strategy would compensate for production losses if disruptive adaptations (e.g. reduced density) were adopted, and more land got access to irrigation. Relocation strategy would foster high premium wine production in the constrained mountainous areas where grapevine is less impacted by climate change. This research shows that a spatial distribution of technical changes gives room for adaptation to climate change, and that the collaboration with local stakeholders is a key to the identification of relevant adaptation. Further research should explore the potential of adaptation strategies based on soil quality improvement and on water stress tolerant varieties.