Terroir 2008 banner
IVES 9 IVES Conference Series 9 Effect of soil type on Sauvignon blanc and Cabernet-Sauvignon wine style at different localities in South Africa

Effect of soil type on Sauvignon blanc and Cabernet-Sauvignon wine style at different localities in South Africa

Abstract

The wine producing regions of South Africa are characterized by climatic diversity. The Coastal Region has a Mediterranean climate, with a mean annual rainfall of c. 690 mm, whereas the Breede River Valley has a semi-arid climate with an annual rainfall of less than 300 mm.
Although irrigation is increasingly practiced, rain-fed vineyards are still commonly encountered in the Coastal Region. Wine styles differ in these vineyards. These differences are due, amongst other factors, to variations in climate and topography. They are also influenced by variations in soil type, notable with regard to water-holding capacity. In contrast to the Coastal Region, all grapevines in the Breede River Valley are irrigated. Under these conditions, in which the effects of soil type, and of water holding capacity, are moderated by scientific irrigation, wine style may be expected to be mainly affected by climate.
The aim of this investigation was to quantify the effect of soil type on wine style in rain-fed Sauvignon blanc and Cabernet Sauvignon vineyards in the Coastal Region, and in irrigated vineyards of the same cultivars in the Breede River Valley. Two experimental plots, representing different soil types, were identified within each vineyard. Experimental wines were prepared separately for each soil type.
Results showed that the styles of Sauvignon blanc, and of Cabernet Sauvignon wines from the Coastal Region, and from the Breede River Valley, were affected by both climate and soil type. The effect of soil type was moderated, but not entirely eliminated, by scientifically scheduled irrigation.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

M.P. OLIVIER and W.J. CONRADIE

ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599, South Africa

Contact the author

Keywords

Breede River Valley, Cabernet Sauvignon, Coastal Region, Sauvignon blanc, South Africa

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Selective and sensitive quantification of wine biogenic amines using a dispersive solid-phase extraction clean-up/concentration method

Biogenic amines exist in numerous foods, including wine. They can have aliphatic (putrescine, cadaverine, spermine, and spermidine), aromatic (tyramine and phenylethylamine) and heterocyclic structure (histamine and tryptamine)

Influence of social interaction levels on panel effectiveness in developing wine sensory profiles using consensus method

The development of sensory profiles is crucial for quality control and innovation in the wine industry. If quantitative descriptive analysis is the most commonly used method for establishing sensory profiles due to its robustness, it presents significant limitations.

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7).

Service crop effects on grapevine water and nitrogen status and yield under Mediterranean climate

Service crops in vineyard can provide multiple ecosystem services but they can also lead to competition with the grapevine for soil resources in the Mediterranean region due to potential severe droughts (Garcia et al., 2018). One of the levers of action to manage this competition is the choice of species adapted in terms of growth dynamics and water and nutrients’ needs. The objectives of this study were to determine the effect of temporary service crops on grapevine water and nitrogen status and grapevine yield and yield components in a Mediterranean vineyard.

Nitrogen uptake, translocation and YAN in berries upon water deficit in grapevines with contrasting stomatal sensitivity

Nitrogen (N2) is critical in grape berries, especially in organic wine making. After intake, N2 follows various metabolic and allocation routes and, from veraison, partly reallocates into berries. Water deficit affects the N2 nutrition due to a poor diffusion in soil solution and vascular mobilisation. Also, affects photosynthesis and the energy needed for metabolism, whose extent would depend on the stomatal sensitivity of the plant. We have assessed the effect of a moderate water deficit from pea size, in 3 years old field grown potted plants of Chardonnay (CH) and Cabernet Sauvignon (CS), differing in stomatal sensitivity, on the N2 status of plant parts. Water deficit reduced photosynthesis, leaf area and fresh and dry plant mass along the season, but up to a higher extent in CS.