Terroir 2008 banner
IVES 9 IVES Conference Series 9 Vineyard soils characterization and its influence on the grape quality of cv. Carmenère in the Maipo Valley, Chile

Vineyard soils characterization and its influence on the grape quality of cv. Carmenère in the Maipo Valley, Chile

Abstract

Produced since 1998, the De Martino Single Vineyard Carmenère is the first Carmenère Icon wine of Chile. The grapes are coming form a plot of 11 ha in Isla de Maipo, where the technicians of the winery have developed knowledge of their work, resulting in 3 levels of quality of the grapes. Normally harvested with no precision, this study is oriented towards the understanding of the differences in the quality of the Carmenère, mainly caused by different kinds of soils, and also the development of an accurate cartography of the different terroir units. The zonage of terroir units, made by filed observations of the vines and the soils physical properties, plus electric conductivity of soils and NDVI analysis allows the oenological team to make a selected harvest in 2007. Finally, different stages of sensorial analysis where developed to follow the resultants of this work for his first year.

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

Eduardo Jordan (1), Marcelo Retamal (1), Daniela Ibáñez (2), Oscar Seguel (2), Álvaro Peña (2), Pedro Parra (2)

(1) Viña Demartino, Manuel Rodríguez 229, Isla de Maipo
(2) Universidad de Chile, Facultad de Ciencias Agronómicas, Departamento de Agroindustrias y Enología. Casilla 1004, Santiago. Chile

Contact the author

Keywords

Carménère, chili, terroir, sols, zonage

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

Effects of soil characteristics on manganese transfer from soil to vine and wine

Aim: In recent times the export of Beaujolais wines has been jeopardised due to a limit of manganese content (Mn) in wine implemented by China (2 mg/L), related to suspicions of potassium permanganate fraud. Nevertheless, soil Mn content may be high in some soil types in Beaujolais. The aim of this study was to improve knowledge of manganese transfer from soil to vine and wine because data on this subject is scarce.

Post-plant nematicide timing for northern root-knot nematode in Washington wine grapes

Vigor declines in older vineyards and poor vine establishment in replant situations have been attributed to plant-parasitic nematodes. The northern root-knot nematode, Meloidogyne hapla, is the most prevalent plant-parasitic nematode species found in Washington wine grape vineyards. Management for nematodes in established vineyards is limited to the application of post-plant nematicides. We are evaluating new nematicides that are currently not registered in grape for their efficacy in controlling M. hapla and a part of that evaluation includes improving the alignment of nematicide application timing with the vulnerable second-stage juvenile (J2) life stage of M. hapla.

Effects of oak barrel aging monitored by 1H-NMR metabolomics

The study of wine evolution during barrel aging is an important aspect of wine quality. Our previous works have shown that wine metabolome monitoring by

1H-NMR approaches allows determining the impact of different winemaking processes including traitements using enzymes or finning agents [1].

Methoxypyrazine concentrations in grape-bunch rachis are influenced by rootstock, region, light, and scion.

Methoxypyrazines (MPs) are readily extracted from grape berry and rachis during fermentation and can impart “green” and “herbaceous” sensory attributes to wine. Irrespective of whether MPs, including 3-isobutyl-2-methoxypyrazine (IBMP), 3-isopropyl-2-methoxypyrazine (IPMP), and 3-sec-butyl-2-methoxypyrazine (SBMP), are extracted from berry or other vine material, techniques for remediation of wine with overpowering sensory characters attributable to MPs suffer from poor specificity or produce undesirable sensory outcomes, meaning that alternative control approaches are needed.

Exploring the inner secrets of grapevine: a journey through plant-microbe interactions

Throughout centuries of anthropocentric breeding, plants have been selectively bred to enhance their quality traits and yield, often overlooking the importance of neglected attributes, like those involved in the interactions with beneficial microorganisms. This phenomenon led to an alteration in the distribution of photosynthetic products, shifting from defence mechanisms to growth, commonly described as ‘domestication syndrome’. Addressing the losses stemming from this condition is imperative just as unravelling the concealed communication between grapevines and beneficial microorganisms.