Composition of grape grown on different Homogenous Terroir Units (HTU)

Abstract

This paper was based on the soil maps units from Ribera de Duero viticulture and wine Denomination of Origin that defined different Homogeneous “Terroir” Units (HTU) with potentially diverse oenological qualities. The main aim of this study was the study of possible correlations between HTU categories and the development and quality of the wine grapes cultivated on specified HTUs. Five vineyards from three different optimum HTUs were selected for this study. Selection criteria were grape variety, clone, rootstocks, age, training systems and cultural practices, trying to select the most similar vineyards.
Samples of 25Kg were manually harvested, from each one of the 15 selected vineyards. The grapes were harvest at the degree of technological maturity as similar as it was possible. Technological maturity is correlated with adequate levels of sugar, acidity and phenolic content, so that good sanitary stages and even good levels of aroma precursor compounds. So, composition of grapes was evaluated considering all these parameters, however this paper showed only partial results, showing levels of sugar, acidity variables (pH, titrable or total acidity and content of malic acid), and phenolic compounds (several phenolic families were considered: total polyphenols, anthocyanins, catechin and flavanol levels). This work will be completed with future studies that will be carried out in future vintages.
Obtained data showed that, even having a large variance among vineyards of the studied Homogeneous Terroir Units, was possible to detect significant differences on the composition and oenological quality of the grapes of each UHT.

 

DOI:

Publication date: December 8, 2021

Issue: Terroir 2008

Type : Article

Authors

M.L. GONZALEZ-SANJOSE (1), M.D. RIVERO (1), M. BLEOJU (1) and V. GOMEZ-MIGUEL (2)

(1) Department of Biotechnology and Food Science. University of Burgos. 09001 Burgos, Spain
(2) Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Spain

Keywords

Terroir, zoning, grape quality, soil units

Tags

IVES Conference Series | Terroir 2008

Citation

Related articles…

EFFECTS OF HYDROXYTYROSOL ON THE CHEMICAL PROFILE AND SENSORY ATTRIBUTES OF A RED TUSCAN WINE

The chemical profile and sensory attributes were studied in Borrigiano IGT Toscana wine (Italy), a blend of Sangiovese 85% and Cabernet Sauvignon 15% grapes harvested in September 2020, where 2-(3,4-dihydroxyphenyl)ethanol (hydroxytyrosol, HT, [1]) was added to a 750-ml wine bottle in 3 different amounts (30, 60, 120 mg) and compared with the control (no HT addition). The study aimed to evaluate whether Polyphenol-HT1®, a high purity HT (>99%) produced by Nova Mentis using biotechnology, could be used as a supplement to sulfites and how it would impact the sensory and chemical profile of this wine [2]. Each sample was prepared in triplicate.

LC-HRMS data analysis of natural polymer homologue series Application on wine neutral oligosaccharides

Although oligosaccharides have much impact both on health (prevention of diabetes, cardiovascular disease), and on the perception of wine (sweetness, astringency, acidity or bitterness), information on their composition in wine is still limited.

Somatic embryogenesis and polyploidy in grapevine: morphological shoot and leaf traits variations

Somatic embryogenesis (SE) has been used in a variety of biotechnology applications such as virus elimination, cryopreservation, induced mutagenesis and genetic transformation. The SE induction process may cause DNA alterations and ploidy changes, which may provide a source of genetic variability useful for the improvement of agronomic characteristics of plants. This research aims at investigating the spontaneous alterations of the genome in grapevine plants regenerated through SE. Regenerants obtained from different embryogenic events from three different grapevine genotypes (Catarratto, Frappato and Nero d’Avola) were analysed.

Autochthonous yeasts: a microbiological tool to exalt the quality of the apulian sparkling wine

The selection, characterization, and recruitment of autochthonous yeast strains to drive the alcoholic fermentation process is a highly researched practice because it allows the differentiation of the organoleptic properties of wines, assuring process standardization, reducing fermentation times and improving the quality and safety of the final products [1, 2]. Sparkling wines are “special wines” obtained by secondary fermentation of the base wine. ​In the traditional method (Champenoise method), the re-fermentation takes place in the bottle after the addition to the base wine of the so-called tirage solution. This step, also known as prise de mousse, is followed by an aging period characterized by the release of compounds from the yeast cells that affect the organoleptic properties of the final product. The use of autochthonous yeasts as starter cultures for secondary fermentation is one of the recent innovations proposed to enhance and differentiate these wines’ sensory quality [3,4]. Apulia is the second Italian wine-producing region, and its productive chain is now going through a qualitative evolution by implementing the employment of innovative approaches to exalt the peculiar properties of regional wines.

Legacy of land-cover changes on soil erosion and microbiology in Burgundian vineyards

Soils in vineyards are recognized as complex agrosystems whose characteristics reflect complex interactions between natural factors (lithology, climate, slope, biodiversity) and human activities. To date, most of the unknown lies in an incomplete understanding of soil ecosystems, and specifically in the microbial biodiversity even though soil microbiota is involved in many key functions, such as nutrient cycling and carbon sequestration. Soil biological properties are indicative of soil quality. Therefore, understanding how soil communities are related to soil ecosystem functioning is becoming an essential issue for soil strategy conservation. Here, we propose to assess the importance of land-cover history on the present-day microbiological and physico-chemical properties. The studied area was selected in the Burgundian vineyards (Pernand-Vergelesses, Burgundy, France) where land occupation has been reconstructed over the last 40 years. Soil samples were collected in five areas reflecting various land cover history (forest, vineyards, shifting from forest to vineyards). For each area, physico-chemical parameters (pH, C, N, P, grain size) were measured and DNA was extracted to characterize the abundance and diversity of microbial communities. The obtained results show significant differences in the five areas suggesting that present-day microbial molecular biomass and bacterial taxonomic is partly inherited from past land occupation. Over longer period of time, such study of land-uses legacies may help to better assess ecosystem recovery and the impact of management practices for a better soil quality and vineyards sustainability.