Terroir 2006 banner
IVES 9 IVES Conference Series 9 Free amino acid composition of must from 7 Vitis vinifera L. cv. in Latium (Italy)

Free amino acid composition of must from 7 Vitis vinifera L. cv. in Latium (Italy)

Abstract

Free amino acid concentrations in must of 7 Vitis vinifera cultivars (Cabernet Franc, Syrah, Merlot, Montepulciano, Sangiovese, Cesanese d’Affile, Carmenere) grown in the Latium region (Italy) were monitored from 2003 to 2005. The cultivars were located in a homogeneous soil and climatic zone and with the same training system (Cordon Spur). The influence of climate was assessed with year-to-year variations of maximum and minimum temperatures and rainfall. The amino acids were compared individually to show year-to-year variations. The concentrations of individual amino acids differed considerable between years, whereas the amino acids profile did not differ significantly from one year to another in all 7 cultivars studied. Arginine, proline, varied between years, while proline: arginine ratio did not change. Arginine, proline, proline: arginine ratio, total free α–amino acid and total free α–amino N concentration were not correlated with soluble solids concentration at harvest. The sum total of amino acids in musts differed significantly from one variety to another and was used as an index to differentiate between varieties from the same area.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Francesca CECCHINI (1), Massimo MORASSUT (1) and Emilia GARCIA MORUNO (2)

(1) CRA Istituto Sperimentale per l’Enologia Via Cantina Sperimentale, 00049 Velletri (Roma), Italy
(2) CRA Istituto Sperimentale per l’Enologia Via Pietro Micca, 35, 00141 Asti, Italy

Contact the author

Keywords

cultivar, must, amino nitrogen

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

White wine lees: unlocking the relationship between chemical composition and antioxidant potential

The wine-making process generates numerous by-products at each stage (crushing, fermentation, ageing), including wine lees, which account for almost 25% of the total quantity.

Evaluating the greenness of wine analytical chemistry: A new metric approach

Wine is a complex matrix whose composition depends on climatic, agricultural, and winemaking factors, making quality control and authenticity assessment critical in the global market.

Untargeted metabolomics reveals the impact of cork oxygen transfer on non-volatile compounds during red wine ageing

During red wine aging, numerous chemical reactions occur, contributing to the modification and enhancement of the wine sensory parameters over time [1].

Effect of two water deficit regimes on the agronomic response of 12 grapevine varieties cultivated in a semi-arid climate

The Mediterranean basin is one of the most vulnerable regions to Climate Change effects. According to unanimous forecasts, the vineyards of Castilla-La Mancha will be among the most adversely affected by rising temperatures and water scarcity during the vine’s vegetative period. One potential strategy to mitigate the negative impacts of these changes involves the identification of grapevine varieties with superior water use efficiency, while ensuring satisfactory yields and grape quality.

Anthropogenic factors in modulations of fungal populations from grapes to wines and their repercussions on wine characteristics

The effects of anthropogenic activities on vineyard (different plant protections) and in winery
(pressing/clarification step, addition of sulfur dioxide) on fungal populations from grape to wine were studied. The studied anthropogenic activities modify the fungal diversity. Thus, lower biodiversity of grapes from organic modality was measured for the three vintages considered compared to biodiversity from ecophyto modality and conventional modality. The pressing / clarification steps strongly modify fungal populations and the influence of the winery flora is highlighted.