Terroir 2006 banner
IVES 9 IVES Conference Series 9 Free amino acid composition of must from 7 Vitis vinifera L. cv. in Latium (Italy)

Free amino acid composition of must from 7 Vitis vinifera L. cv. in Latium (Italy)

Abstract

Free amino acid concentrations in must of 7 Vitis vinifera cultivars (Cabernet Franc, Syrah, Merlot, Montepulciano, Sangiovese, Cesanese d’Affile, Carmenere) grown in the Latium region (Italy) were monitored from 2003 to 2005. The cultivars were located in a homogeneous soil and climatic zone and with the same training system (Cordon Spur). The influence of climate was assessed with year-to-year variations of maximum and minimum temperatures and rainfall. The amino acids were compared individually to show year-to-year variations. The concentrations of individual amino acids differed considerable between years, whereas the amino acids profile did not differ significantly from one year to another in all 7 cultivars studied. Arginine, proline, varied between years, while proline: arginine ratio did not change. Arginine, proline, proline: arginine ratio, total free α–amino acid and total free α–amino N concentration were not correlated with soluble solids concentration at harvest. The sum total of amino acids in musts differed significantly from one variety to another and was used as an index to differentiate between varieties from the same area.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Article

Authors

Francesca CECCHINI (1), Massimo MORASSUT (1) and Emilia GARCIA MORUNO (2)

(1) CRA Istituto Sperimentale per l’Enologia Via Cantina Sperimentale, 00049 Velletri (Roma), Italy
(2) CRA Istituto Sperimentale per l’Enologia Via Pietro Micca, 35, 00141 Asti, Italy

Contact the author

Keywords

cultivar, must, amino nitrogen

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

High pressure homogenization of wine lees. A tool to streamline the management of wine ageing

Aging on lees (AOL) has been used for wine aging for a long time, thanks to its ability to modify wine composition, improving sensory characteristics and stability. However, the prolonged contact with fermentation lees may increase the risk of developing sensory defects, due to the growth of unwanted microorganisms. Furthermore, AOL requires a large amount of work to manage bâtonnage and for topping up the barrels, significantly increasing production costs.

Étude intégrée et allégée des terroirs viticoles en Anjou: caractérisation et zonage de l’unité terroir de base, en relation avec une enquête parcellaire

The terroir concept is presented as the basis of the A.O.C system, in the french vineyards. The “Anjou terroirs” programme aims at bringing the necessary scientific basisfor a rational and reasoned exploitation of the terroir. lt must lead to finalizing a lighter, more relevant integrated method of characterisation wich could be generally applied.

Molecular approaches for understanding and modulating wine taste

Wine consumers generally demand wines having a perception of softer tannins and less ripe, having a heaviness and richness on palate (full-body wine) with a limpid and stable color. However, polyphenol
(tannins)-rich wines have been also correlated with unpleasant taste properties such as astringency and
bitterness when perceived at high intensities. Modulating these unpleasant properties could be important for consumer’s approval of wines.

Evaluation of intra-vineyard spatial and temporal variability of leaf area index using multispectral images obtained by satellite (Landsat 8, Sentinel-2) and unmanned aerial vehicle platforms

Estimation of vineyard leaf area index (LAI) is an important aspect for the winegrowers. However, tracking and monitoring are difficult tasks due to time constraints. Satellite and unmanned aerial vehicle (UAV) imaging have become a practical monitoring method for LAI. Nevertheless, for a proper LAI determination, the image’s spatial resolution is a key factor, since low-resolution images are incapable of distinguishing between adjacent vines due to the large area covered in each pixel, this leads to misinterpretation or generalisation of vineyard information.

Mechanical fruit zone leaf removal and deficit irrigation practices interact to affect yield and fruit quality of Cabernet Sauvignon grown in a hot climate

Cabernet Sauvignon is the top red wine cultivar in CA, however, the hot climate in Fresno is not ideal for Cabernet Sauvignon, particularly for berry color development. Fruit-zone leaf removal and irrigation were studied previously to have the significant effect on grape yield performance and berry quality. But the timing of leaf removal and the timing of irrigation are still inconclusive. Also, mechanical fruit-zone leaf removal is relatively new in CA. Our study aims to identify the interactive effect of mechanical fruit-zone leaf removal and irrigation on Cabernet Sauvignon’s yield performance and fruit quality and find the ideal timing of leaf removal and irrigation to maximize the berry color while maintaining the sustainable yield level.