Terroir 2006 banner
IVES 9 IVES Conference Series 9 Variety “Rebula” (Vitis vinifera L.) determines the terroir Goriška brda “Collio” in Slovenia

Variety “Rebula” (Vitis vinifera L.) determines the terroir Goriška brda “Collio” in Slovenia

Abstract

A «terroir» is a group of vineyards from the same region, belonging to a specific appellation, and sharing the same type of soil, weather conditions, grapes and wine making savoir-faire, which contribute its specific personality to the wine. White wine variety «Rebula» or «Ribolla gialla» is a local and traditional variety, which is mentioned already in XIII. century like variety for tax paying and merchandise. «Rebula» became the most popular and known variety from «Goriška brda» winegrowing region; therefore it is competitive to terroir determination, including main ecological characteristics indeed. The vineyards with « Rebula » are located on three different soil types, saturated soil (active lime, appearance of grits), anthropogenized soil (vitisol, larger mineral, particles and active lime) and coluvial soil (active lime, high groundwater level) an also on different altitudes, where different grape quality of «Rebula» is observed. The four different terroirs of soil type and climatic characteristics are determined in Goriška brda, where the vineyards of « Rebula » are cultivated on terraces, plateaus and plans. The production of «Rebula» still increases, therefore the best interactions among weather conditions, soil type and cultivation practices of «Rebula», for the same object as the best grape quality, have to be determined in near future.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Poster

Authors

Denis RUSJAN (1), Matija STRLIČ and Zora KOROŠEC-KORUZA (1)

(1) University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
(2) University of Ljubljana, Faculty of Chemistry and Chemical Technology, Aškerčeva 5, SI-1000 Ljubljana, Slovenia

Contact the author

Keywords

grape, Rebula, quality, terroir, Goriška brda

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

Wine metabolomics and sensory profile in relation to terroir: A case study focusing on different wine-growing areas of Piacenza Province (Italy)

Aim: In this work, we have optimized a robust methodology for investigating possible correlations between the phytochemical profile of wine and the terroir (including the climate), considering the specific wine-growing area. In particular, the untargeted metabolomic and sensorial profiles of Gutturnio DOC commercial wines (both still and “frizzante” types) from different production areas in the Piacenza province were determined. The geographical areas taken into consideration for this study consisted in Val Tidone, Val Nure and Val d’Arda.

Nutrients and heavy metals in a vineyard soil under organic, biodynamic and conventional management

Promoting sustainable agricultural practices is one of the challenges of the last decades. Organic and biodynamic viticulture can be an alternative to intensive viticulture, furthermore contributing to reduction of impact on environment and human health and guaranteeing soil preservation and quality products1. The aim of this experimentation was to evaluate the medium and long-term effects of different agronomic practices in viticulture on nutrient availability and heavy metal accumulation in soil.

Untargeted metabolomics analyses to study taste-active compounds released during post-fermentation maceration of wine

The sensory properties of a wine depends on its colours, aromas and flavors. Regarding red wines, the gustatory part consists of the acid, bitter and sweet tastes

Spatial variability of temperature is linked to grape composition variability in the Saint-Emilion winegrowing area

Elevated temperature during the grape maturation period is a major threat for grape quality and thus wine quality. Therefore, characterizing the grape composition response to temperature at a larger scale would represent a crucial step towards adaptation to climate change. In response to changes in temperature, various physiological mechanisms regulate grape composition. Primary and secondary metabolisms are both involved in this response, with well-known effects, for example on anthocyanins, and lesser known effects, for example on aromas or aroma precursors. At the field scale or at the regional scale, however, numerous environmental or plant-specific factors intervene to make the effects of temperature difficult to distinguish from overall variability. In this study, it was attempted to overcome this difficulty by selecting well-characterized situations with differing temperatures.
A long-term study of air temperature variability across several Merlot vineyards in the Saint-Emilion and Pomerol wine producing area found significant temperature differences and gradients at various time scales linked to environmental factors. From this study area, a few sites were selected with similar age, soil and training system conditions, and with repeated and contrasted temperature differences during the maturation period. The average temperature difference during the maturation period was about 2°C between cooler and warmer sites, a difference similar to that expected under future climate change scenarios. In close vicinity to the temperature sensors at each site, grape berries were sampled at different times until full maturity during 2019 and 2020. Also, berries from bunches on either side of the row were analyzed separately, allowing an investigation of bunch exposure effect associated with the coupling of berry temperature and solar radiation. Four replicates of pooled berries for each time – site – bunch exposure combination were obtained and analyzed for biochemical composition. Analyses of variance of the biochemical composition data collected at different sampling times reveal significant effects associated with temperature, site, and bunch azimuth. For instance, anthocyanins in grape skins are clearly influenced by temperature and solar radiation exposure, with up to 30% reduction in warmer conditions.

HOW OXYGEN CONSUMPTION INFLUENCES RED WINES VOLTAMMETRIC PROFILE

Phenolic compounds play a central role in sensory characteristics of wine, such as colour, mouthfeel, flavour and determine its shelf life. Furthermore, the major non-enzymatic wine oxidation process is due to the catalytic oxidation of phenols in quinones. Due their importance, during the years have been developed different analytical methods to monitor the concentration of phenols in wine, such as Folin-Ciocalteu method, spectrophotometric techniques and HPLC. These methods can also be used to follow some oxidation-related chemical transformations.