Terroir 2006 banner
IVES 9 IVES Conference Series 9 Variety “Rebula” (Vitis vinifera L.) determines the terroir Goriška brda “Collio” in Slovenia

Variety “Rebula” (Vitis vinifera L.) determines the terroir Goriška brda “Collio” in Slovenia

Abstract

A «terroir» is a group of vineyards from the same region, belonging to a specific appellation, and sharing the same type of soil, weather conditions, grapes and wine making savoir-faire, which contribute its specific personality to the wine. White wine variety «Rebula» or «Ribolla gialla» is a local and traditional variety, which is mentioned already in XIII. century like variety for tax paying and merchandise. «Rebula» became the most popular and known variety from «Goriška brda» winegrowing region; therefore it is competitive to terroir determination, including main ecological characteristics indeed. The vineyards with « Rebula » are located on three different soil types, saturated soil (active lime, appearance of grits), anthropogenized soil (vitisol, larger mineral, particles and active lime) and coluvial soil (active lime, high groundwater level) an also on different altitudes, where different grape quality of «Rebula» is observed. The four different terroirs of soil type and climatic characteristics are determined in Goriška brda, where the vineyards of « Rebula » are cultivated on terraces, plateaus and plans. The production of «Rebula» still increases, therefore the best interactions among weather conditions, soil type and cultivation practices of «Rebula», for the same object as the best grape quality, have to be determined in near future.

DOI:

Publication date: December 22, 2021

Issue: Terroir 2006

Type: Poster

Authors

Denis RUSJAN (1), Matija STRLIČ and Zora KOROŠEC-KORUZA (1)

(1) University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia
(2) University of Ljubljana, Faculty of Chemistry and Chemical Technology, Aškerčeva 5, SI-1000 Ljubljana, Slovenia

Contact the author

Keywords

grape, Rebula, quality, terroir, Goriška brda

Tags

IVES Conference Series | Terroir 2006

Citation

Related articles…

DNA-free genome editing confers disease resistance in grapevine varieties

The grapevine is facing significant challenges due to climate change, as rising temperatures impact its physiological traits and disrupt plant phenology.

Closure permeability: a key parameter for modulating the aroma of monovarietal white wines during bottle ageing

Bottle aging is crucial for wine quality, influencing its chemical and sensory properties [1]. Ideally, a phase of qualitative ageing enhances sensory attributes before a decline in quality occurs. Understanding the impact of oenological variables on these phases is a key challenge in modern winemaking.

Wine tourism in southern Italy: A surge in popularity and economic impact

Wine tourism has transformed from a leisure activity into a crucial part of the tourist experience, significantly contributing to rural tourism’s expansion in italy. It has witnessed a notable surge in popularity in recent years, evolving as a key motivator for travel (antonioli corigliano, 2002; brunori & rossi, 2000; città del vino & censis servizi, 2011; garibaldi, 2018; 2019a; 2020; montanari, 2009; romano & natilli, 2009). The allure of wine tourism, driven by sensory experiences and cultural immersion, continues to attract a diverse group of tourists. The economic impact is substantial, with events and festivals contributing approximately €2.5 billion annually.

Water status response of Vitis vinifera L. cv Cabernet Sauvignon during the first years within the long-term VineyardFACE (Free Air Carbon dioxide Enrichment) study 

Understanding grapevine responses to increasing atmospheric CO2 (aCO2) concentrations is crucial for assessing the impact of climate change on viticulture. Previously, at the VineyardFACE (Free Air Carbon dioxide Enrichment) experiment in Geisenheim, leaf gas exchange measurements were made as Vitis vinifera cv. Cabernet Sauvignon established from planting (2014 to 2016) under aCO2 or elevated CO2 (eCO2, aCO2 + 20%) concentrations. Contrary to many preceding observations with grapevines and other perennial plant species the young vines showed an increased intrinsic water use efficiency (WUEi) that was mainly associated with an increase in net assimilation (A) rather than a decrease in stomatal conductance (gs) under eCO2.

Time vs drought: leaf age rather than drought drives osmotic adjustment in V. vinifera cv. Pinot Noir

Global warming and increased frequency and/or severity of drought events are among the most threatening consequences of climate change for agricultural crops. In response to drought, grapevine (as many other plants) exhibits osmotic adjustment through active accumulation of osmolytes which in turn shift the leaf turgor loss point (TLP) to more negative values, allowing to maintain stomata opened at lower water potentials1. We investigated the capacity of Pinot noir leaves to modulate their osmotic potential as a function of: (i) time (seasonal osmoregulation), (ii) growing temperatures, and (iii) drought events, to enhance comprehension of the resilience of grapevines in drought conditions. We performed trails under semi-controlled field conditions, and in two different greenhouse chambers (20/15 °C vs 25/20 °C day/night). For two consecutive vegetative seasons, grafted potted grapevines (Pinot noir/SO4) were subjected to two different water regimes for at least 30 days: well-watered (WW) and water deficit (WD).