GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 Decline of new vineyards in Southern Spain

Decline of new vineyards in Southern Spain


Context and purpose of the study – In-season vineyard pest management relies on proper timing, selection, and application of products. Most of the research on pest management tends to focus on the influence of regional conditions on these aspects, with an emphasis on product timing and efficacy evaluation. One aspect that is not fully vetted in various vineyard regions is application (sprayer) technology. The purpose of this study was to determine the influence of regional conditions on sprayer performance in commercial wine grape vineyards in eastern Washington.

Material and methods – Three commercially available sprayer technologies were optimized and assessed in the 2016 and 2017 production seasons. The sprayer technologies evaluated were: multi-fan heads, pneumatic, and electrostatic. Data were collected in commercial Vitis vinifera wine grape vineyards at two growth stages, 50% bloom and pea sized berries using a fluorescent tracer (Pyranine) to track deposition within the vineyard. Aspects of the sprayers that were evaluated were spray deposition patterns in the canopy and in-field drift (aerial and vineyard floor). Sprayer deposition was collected on 5cm x 5cm plastic cards. These cards were placed in 5 canopy zones (upper sides, upper middle, and both sides of fruit zone), on the vineyard floor in the first 3 rows downwind from the sprayer, and on aerial poles collecting drift in 0.3-meter increments above the canopy for 0.9-meters in the first 3 rows downwind from the sprayer. Sprayer data collected in the vineyard was used to evaluate total spray deposition of each sprayer.

Results – All sprayer technologies showed consistent in-canopy deposition and drift patterns at both canopy growth stages. The greatest deposition found in the canopy; the Quantum Mist had 95.57% and 98.48%, the Gregorie had 97.35% and 97.08%, and the On Target had 91.79% and 80.12% of total spray deposited in the canopy at the 50% bloom and pea-sized berry growth stages, respectively. Aerial and floor drift was relatively minimal with these technologies. The Quantum Mist had aerial drift of 1.65% and 0.01%, and floor drift of 2.78% and 1.51% for the two growth stages, respectively. The Gregoire had aerial drift of 0.09% and 0.08%, and floor drift of 2.56% and 2.84% for the two growth stages, respectively. The On Target had aerial drift of 0.42% and 4.05%, and floor drift of 7.79% and 15.83% for the two growth stages, respectively. Aerial and floor drift were highest in the row closest to spray application, indicating that longer-distance drift is relatively low with modern spray technologies. Ultimately, the information generated from this project will be used to help optimize sprayer selection for different vineyard sites.


Publication date: September 21, 2023

Issue: GiESCO 2019

Type: Poster


Margaret MCCOY1, Gwen HOHEISEL2, Lav KHOT3, Michelle MOYER1

1 Dept. of Horticulture, WSU IAREC, 24106 N Bunn Road,Prosser, Washington, USA
2 Dept. of Extension, WSU IAREC, 24106 N Bunn Road,Prosser, Washington, USA
3 Dept. of Biological Systems, Engineering WSU IAREC, 24106 N Bunn Road,Prosser, Washington, USA


Sprayer, drift, deposition, Pyranine, fluorescent, optimization


GiESCO | GiESCO 2019 | IVES Conference Series


Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.