Terroir 2004 banner
IVES 9 IVES Conference Series 9 The role of the landscape as a component of the terroir in Spain (DO Somontano, NE Spain)

The role of the landscape as a component of the terroir in Spain (DO Somontano, NE Spain)

Abstract

The components and methodology for characterization of the terroir in Spain have been described by Gómez-Miguel et al. (2003), Sotés et al. (2003), taking into account the full range of environmental factors (i.e: climate, vegetation, topography, soils, altitude, etc.), landscape variables (derived from photo-interpretation and a digital elevation model), and variables specific to the country’s viticulture (i.e: size and distribution of the vineyards, varieties, phenology, productivity, quality, designation regulations, etc.). This paper describes the integration of the resulting database in a Geographic Information System (G.I.S.) that allows the spatial and statistical analysis of all variables; the parametric system of variable quantification; the selection of main endogenous and exogenous variables for terroir characterization; and the role of the variables that describe the landscape in the final results. The analysis has been carried out on over 1.8 million ha. This paper presents the results of a case study in the county “Somontano” that covers an expanse of 142,000 ha and includes 4,173 ha of vineyards. The observed distribution of vineyards in this county is correlated to the integrated landscape-terrain classification and productivity but does not depend on the total available area for cultivation. It is significant that a subset of geological formations that accounts for 45 percent of the total area sustains over 90 percent of the vineyards.
The results of the study have general implications for landscape-terrain classification in Spain and define a set of methodological guidelines. These guidelines refer to:
a) Definition of the set of variables that define the landscape: characterization of the lithological and morphological components; homogenization of lithological units; cartography of the geological formations; integration of a digital elevation model to derive altitude, orientation, exposure, and slope. The spatial scale should be at least 1:25.000.
b) Definition of the Homogeneous Land Units (HLU): The parameter characterization was carried out from the units which were previously defined from the data of the environmental analysis.
c) Experimental design: Selection of Homogeneous Land Units and characterization within the units.
d) Final zoning: Integration of the Homogeneous Land Unit with the plant (variety and rootstock) and the product (must and wine).

Related articles…

Postveraison shoot trimming in Tannat and Merlot: preliminary results on yield components, plant balance and berry composition

There is currently a trend towards the production of wines with low alcohol content. To achieve this, grapes with low sugar content must be used. There are techniques at the vineyard level that can delay ripening and avoid excessive sugar accumulation without, a priori, affecting the final polyphenol content. Postveraison shoot trimming (PVST) is experimentally evaluated for these purposes, but its impact under Uruguayan climatic conditions with high interannual variability is not known. The aim of this work is to assess the PVST in Tannat and Merlot cultivars and their impact on yield components, plant balance and berry primary composition. In this study, two commercial vineyards of 10 years old Tannat and Merlot (grafted on SO4) at Canelones Department were selected. During the 2020-201 growing season, grapevines were submitted to PVST when grapes reached 15º Brix. In a randomized block, trimmed (T) and control (C) plants were evaluated with three repetitions each cultivar. Evaluation of the evolution of primary berry composition during ripening, measurement of yield components and plant balance were performed. For both cultivars, PVST did not affect yield components. Merlot reached 5.4 kg per plant and Tannat 7.1 kg, with not statistical significance between treatments. However, statistical differences were observed in terms of plant balance. In Merlot Ravaz Index reached a difference of 5.3 (12.0 in T and 6.7 in C) meanwhile Tannat reached 3.5 of statistical difference (13.7 in T and 10.2 in C). The tendency to imbalance for the treated plants had an impact on the final grape composition. Merlot grapes showed statistical difference in final total acidity (0.3 g of difference between treatments) while treatments impact final sugar content on Tannat grapes (10.0 g of difference between treatments). Further studies are needed to assess the impact of different canopy management techniques in our conditions.

Short-term canopy strategies to enhance grapevine adaptation to climate change

Context and purpose of the study. Viticulture faces significant challenges due to climate change, with increased frequency of extreme weather events impacting grapevine growth, grape quality, and wine production.

Metabolomic insights into wine’s sensory identity: unveiling climate-driven changes in aroma composition

Wine, a sensitive and intricate agricultural product, is being affected by climate change, which accelerates grapevine phenological stages and alters grape composition and ripening. This influences the synthesis of key aroma compounds, shaping wine’s sensory attributes [1]. The complex aroma profile, resulting from compound interactions, presents a metabolomics challenge to identify these indicators and their environmental change responses, which is being addressed using diverse analytical techniques.

INVESTIGATION OF FILM COATINGS AS A PROTECTIVE LAYER IN REDUCING THE ABSORPTION OF SMOKE PHENOLS INTO PINOT NOIR GRAPES

Wine grapes exposed to wildfire smoke have resulted in wines with burnt and ashy sensory characteristics¹, that are undesirable qualities in wine. In extreme wildfire events, this can lead to total loss of grape crop. Currently there are no effective solutions in the market to prevent the uptake of smoke compounds into grapes. In this study, previously developed innovative film coatings were tested to analyze their effectiveness in reducing smoke phenol absorption². Four different cellulose nanofiber-based film types were investigated.

Crop water stress index as a tool to estimate vine water status

Crop Water Stress Index (CWSI) has long been a ratio to quantify relative plant water status in several crop and woody plants. Given its rather well relationship to either leaf or stem water potential and the feasibility to sample big vineyard areas as well as to collect quite a huge quantity of data with airborne cameras and image processing applications, it is being studied as a tool for irrigation monitoring in commercial vineyards. The objective of this paper was to know if CWSI estimated by measuring leaf temperature with an infrared hand held camera could be used to substitute the measure of stem water potential (SWP) without losing accuracy of plant water status measure.