Terroir 2004 banner
IVES 9 IVES Conference Series 9 The role of the landscape as a component of the terroir in Spain (DO Somontano, NE Spain)

The role of the landscape as a component of the terroir in Spain (DO Somontano, NE Spain)

Abstract

The components and methodology for characterization of the terroir in Spain have been described by Gómez-Miguel et al. (2003), Sotés et al. (2003), taking into account the full range of environmental factors (i.e: climate, vegetation, topography, soils, altitude, etc.), landscape variables (derived from photo-interpretation and a digital elevation model), and variables specific to the country’s viticulture (i.e: size and distribution of the vineyards, varieties, phenology, productivity, quality, designation regulations, etc.). This paper describes the integration of the resulting database in a Geographic Information System (G.I.S.) that allows the spatial and statistical analysis of all variables; the parametric system of variable quantification; the selection of main endogenous and exogenous variables for terroir characterization; and the role of the variables that describe the landscape in the final results. The analysis has been carried out on over 1.8 million ha. This paper presents the results of a case study in the county “Somontano” that covers an expanse of 142,000 ha and includes 4,173 ha of vineyards. The observed distribution of vineyards in this county is correlated to the integrated landscape-terrain classification and productivity but does not depend on the total available area for cultivation. It is significant that a subset of geological formations that accounts for 45 percent of the total area sustains over 90 percent of the vineyards.
The results of the study have general implications for landscape-terrain classification in Spain and define a set of methodological guidelines. These guidelines refer to:
a) Definition of the set of variables that define the landscape: characterization of the lithological and morphological components; homogenization of lithological units; cartography of the geological formations; integration of a digital elevation model to derive altitude, orientation, exposure, and slope. The spatial scale should be at least 1:25.000.
b) Definition of the Homogeneous Land Units (HLU): The parameter characterization was carried out from the units which were previously defined from the data of the environmental analysis.
c) Experimental design: Selection of Homogeneous Land Units and characterization within the units.
d) Final zoning: Integration of the Homogeneous Land Unit with the plant (variety and rootstock) and the product (must and wine).

Related articles…

Untargeted metabolomics reveals the impact of cork oxygen transfer on non-volatile compounds during red wine ageing

During red wine aging, numerous chemical reactions occur, contributing to the modification and enhancement of the wine sensory parameters over time [1].

REVEALING THE ORIGIN OF BORDEAUX WINES WITH RAW 1D-CHROMATOGRAMS

Understanding the composition of wine and how it is influenced by climate or wine-making practices is a challenging issue. Two approaches are typically used to explore this issue. The first approach uses chemical
fingerprints, which require advanced tools such as high-resolution mass spectrometry and multidimensional chromatography. The second approach is the targeted method, which relies on the widely available 1-D GC/MS, but involves integrating the areas under a few peaks which ends up using only a small fraction of the chromatogram.

Influence of nitrogen supply on colorimetric parameters of Lugana wines

AIM: Color is one of the main qualitative parameters of a wine. As a matter of fact, immediately after having opened a bottle of wine, color, even before aroma and taste, is the first sensorial parameter to be evaluated by the consumer It can change according to various factors depending on the characteristics of the grapes or on the different production and storage processes. This study aims to evaluate the color differences on Lugana wines that are fermented with different yeast and nitrogen supply.

Recent advances in our understanding of the impact of climate change on wine grape production

According to the last IPCC report, the scale of recent climate changes are unprecedented over many centuries. Each of the last four decades has been successively warmer than any decade since 1850. Projections for the future foresee that temperature could reach +3.3°C to +5.7°C under the most pessimistic scenario. It is also projected that every region will face more concurrent and multiple changes in climatic impact-drivers. The frequency of extreme climate events is also likely to increase, as well as the occurrence of indirect constraints. These evolving climatic conditions are alrealdy affecting and will continue to affect the suitability of traditional wine grape production areas, but also create opportunities in new locations.

Aromatic profile of Savatiano Greek Grape Variety as affected by various terroirs in the PGI zone of Attica.

Regionality, frequently called terroir, is often used to market wines from different locations. Savatiano (Vitis Vinifera L.), is the dominant indigenous variety of the Mesogeia – Attiki region, reaching a percentage of 70% of the total vine cultivation, and being the most widely planted variety in Greece. In this context, this research focuses on the evaluation of the impact of different terroirs within the PGI Attiki zone on the aromatic profile of Savatiano.