Terroir 2004 banner
IVES 9 IVES Conference Series 9 The role of the landscape as a component of the terroir in Spain (DO Somontano, NE Spain)

The role of the landscape as a component of the terroir in Spain (DO Somontano, NE Spain)

Abstract

The components and methodology for characterization of the terroir in Spain have been described by Gómez-Miguel et al. (2003), Sotés et al. (2003), taking into account the full range of environmental factors (i.e: climate, vegetation, topography, soils, altitude, etc.), landscape variables (derived from photo-interpretation and a digital elevation model), and variables specific to the country’s viticulture (i.e: size and distribution of the vineyards, varieties, phenology, productivity, quality, designation regulations, etc.). This paper describes the integration of the resulting database in a Geographic Information System (G.I.S.) that allows the spatial and statistical analysis of all variables; the parametric system of variable quantification; the selection of main endogenous and exogenous variables for terroir characterization; and the role of the variables that describe the landscape in the final results. The analysis has been carried out on over 1.8 million ha. This paper presents the results of a case study in the county “Somontano” that covers an expanse of 142,000 ha and includes 4,173 ha of vineyards. The observed distribution of vineyards in this county is correlated to the integrated landscape-terrain classification and productivity but does not depend on the total available area for cultivation. It is significant that a subset of geological formations that accounts for 45 percent of the total area sustains over 90 percent of the vineyards.
The results of the study have general implications for landscape-terrain classification in Spain and define a set of methodological guidelines. These guidelines refer to:
a) Definition of the set of variables that define the landscape: characterization of the lithological and morphological components; homogenization of lithological units; cartography of the geological formations; integration of a digital elevation model to derive altitude, orientation, exposure, and slope. The spatial scale should be at least 1:25.000.
b) Definition of the Homogeneous Land Units (HLU): The parameter characterization was carried out from the units which were previously defined from the data of the environmental analysis.
c) Experimental design: Selection of Homogeneous Land Units and characterization within the units.
d) Final zoning: Integration of the Homogeneous Land Unit with the plant (variety and rootstock) and the product (must and wine).

Related articles…

Relationships between the Fregoni bioclimatic index (IF) and wine quality

The Fregoni bioclimatic index (IF) considers the daily temperature range during the ripening month and the number of days with temperature below 10°C.

Wine aging : a bottleneck Story ?

The sporadic oxidation of white wines remains an open question, making wine shelf life a subjective debate. Through a multidisciplinary synoptic approach performed as a remarkable case study on aged bottles of white wine, this work unraveled a yet unexplored route for uncontrolled oxidation.

Anti/prooxidant activity of wine polyphenols in reactions of adrenaline auto-oxidation

Adrenaline (epinephrine) belongs to catecholamine class. It is a neurotransmitter and both a hormone which is released by the sympathetic nervous system and adrenal medulla in response to a range of stresses in order to regulate blood pressure, cardiac stimulation, relaxation of smooth muscles and other physiological processes. Adrenaline exhibits an effective antioxidant capacity (1). However, adrenalin is capable to auto-oxidation and in this case it generates toxic reactive oxygen intermediates and adrenochrome. Under in vitro conditions, auto-oxidation of adrenaline occurs in an alkaline medium (2).

Terroir or Tūrangawaewae? Expressing sense of place in an emerging New Zealand wine region

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Utility of leaf removal timing and irrigation amounts on grape berry flavonoids under climate change

Context and purpose of the study – The dormant and growing season temperatures in California USA have been increasing with more clear sky days. A consequence increasing temperatures and clear sky days is water deficit conditions. Viticulturists must determine appropriate balances of canopy management and irrigation budgeting to produce suitable yields without compromising berry chemistry. In response, a study designed to test the interactive effects of leaf removal timing and applied water amounts on Cabernet Sauvignon/110R in Napa Valley, CA.