Terroir 2004 banner
IVES 9 IVES Conference Series 9 The role of the landscape as a component of the terroir in Spain (DO Somontano, NE Spain)

The role of the landscape as a component of the terroir in Spain (DO Somontano, NE Spain)

Abstract

The components and methodology for characterization of the terroir in Spain have been described by Gómez-Miguel et al. (2003), Sotés et al. (2003), taking into account the full range of environmental factors (i.e: climate, vegetation, topography, soils, altitude, etc.), landscape variables (derived from photo-interpretation and a digital elevation model), and variables specific to the country’s viticulture (i.e: size and distribution of the vineyards, varieties, phenology, productivity, quality, designation regulations, etc.). This paper describes the integration of the resulting database in a Geographic Information System (G.I.S.) that allows the spatial and statistical analysis of all variables; the parametric system of variable quantification; the selection of main endogenous and exogenous variables for terroir characterization; and the role of the variables that describe the landscape in the final results. The analysis has been carried out on over 1.8 million ha. This paper presents the results of a case study in the county “Somontano” that covers an expanse of 142,000 ha and includes 4,173 ha of vineyards. The observed distribution of vineyards in this county is correlated to the integrated landscape-terrain classification and productivity but does not depend on the total available area for cultivation. It is significant that a subset of geological formations that accounts for 45 percent of the total area sustains over 90 percent of the vineyards.
The results of the study have general implications for landscape-terrain classification in Spain and define a set of methodological guidelines. These guidelines refer to:
a) Definition of the set of variables that define the landscape: characterization of the lithological and morphological components; homogenization of lithological units; cartography of the geological formations; integration of a digital elevation model to derive altitude, orientation, exposure, and slope. The spatial scale should be at least 1:25.000.
b) Definition of the Homogeneous Land Units (HLU): The parameter characterization was carried out from the units which were previously defined from the data of the environmental analysis.
c) Experimental design: Selection of Homogeneous Land Units and characterization within the units.
d) Final zoning: Integration of the Homogeneous Land Unit with the plant (variety and rootstock) and the product (must and wine).

Related articles…

Morphological image analysis for determining bunch grape characteristics: A case study on bunch weight in Cabernet-Sauvignon

Morphological image analysis is a powerful technique used in various fields, including agriculture, to quantitatively assess the physical characteristics of objects. In viticulture, the accurate assessment of grapevine characteristics is essential for optimizing crop management and improving the quality of wine production.

Making sense of available information for climate change adaptation and building resilience into wine production systems across the world

Effects of climate change on viticulture systems and winemaking processes are being felt across the world. The IPCC 6thAssessment Report concluded widespread and rapid changes have occurred, the scale of recent changes being unprecedented over many centuries to many thousands of years. These changes will continue under all emission scenarios considered, including increases in frequency and intensity of hot extremes, heatwaves, heavy precipitation and droughts. Wine companies need tools and models allowing to peer into the future and identify the moment for intervention and measures for mitigation and/or avoidance. Previously, we presented conceptual guidelines for a 5-stage framework for defining adaptation strategies for wine businesses. That framework allows for direct comparison of different solutions to mitigate perceived climate change risks. Recent global climatic evolution and multiple reports of severe events since then (smoke taint, heatwave and droughts, frost, hail and floods, rising sea levels) imply urgency in providing effective tools to tackle the multiple perceived risks. A coordinated drive towards a higher level of resilience is therefore required. Recent publications such as the Australian Wine Future Climate Atlas and results from projects such as H2020 MED-GOLD inform on expected climate change impacts to the wine sector, foreseeing the climate to expect at regional and vineyard scale in coming decades. We present examples of practical application of the Climate Change Adaptation Framework (CCAF) to impacts affecting wine production in two wine regions: Barossa (Australia) and Douro (Portugal). We demonstrate feasibility of the framework for climate adaptation from available data and tools to estimate historical climate-induced profitability loss, to project it in the future and to identify critical moments when disruptions may occur if timely measures are not implemented. Finally, we discuss adaptation measures and respective timeframes for successful mitigation of disruptive risk while enhancing resilience of wine systems.

Varietal thiol precursors in Trebbiano di Lugana grape and must

Trebbiano di Lugana (TdL) is a white variety of Vitis vinifera mainly cultivated in an Italian area located south near Garda lake (Verona, north of Italy). This grape cultivar, also known as “Turbiana,” is used for the production of TdL wine with recognized Protected Designation of Origin whose volatile profile was recently determined [1]. The presence of varietal thiols in TdL, namely 3-mercaptohexan-1-ol and its acetate form, conferring the tropical and citrus notes, has been documented. Winemaking strategies were also described with the purpose of protecting and maintain these desired aromas [2]. To the best of our knowledge, the varietal thiol precursors (VTPs) were not previously determined in TdL grape and must. This study aimed to quantify VTPs in both grape during the ripening and must during the pressing. Volatile C6 compounds were also measured in the must fractions.

GC-O and olfactoscan approaches to reveal premature aging markers in Chardonnay wine

Molecular markers of wine oxydation, such as sotolon or Strecker’s aldehydes that induce respectively nut or curry and boiled vegetables or wilted rose odors, can be percieved as a default by consumers. These volatile compounds are especially formed during the premature aging of wine, but it is likely that several contributing compounds are still unknown as is their combined contribution. This study was carried out to identify the markers of oxydation in Chardonnay wine by Gas Chromatography Olfactometry (GC-O) and to study the impact of these markers on the complex wine aromatic buffer using the Olfactoscan approach.A Chardonnay wine (2018-vintage), taken after malolactic fermentation without sulphites addition, was submitted to an artificial oxidation to simulate more or less prononced premature oxidation. Volatile compounds were extracted by Solid-Phase Extraction (SPE) and analysed by GC-O with a panel of 13 trained subjects. The same extract was also submitted to a second analysis based on the Olfactoscan technique, which allowed to evaluate the impact of each volatile compounds on the complex aromatic buffer of a non-oxidized wine delivered as background odor. Preliminary results revealed three types of behavior. On the one hand, several odor zones appeared only with the background odour, suggesting a synergy effect induced by the compounds in the aromatic buffer. Conversely, odor-active compounds could not be perceived within the background odor suggesting a masking effect. Finally several compounds were found to contribute as key odorants for wine oxydation once mixed with the aromatic buffer. These compounds are still to be identified using complementary techniques.

The challenge of improving oenological quality in favorable conditions for productivity

Marselan (Cabernet-Sauvignon x Grenache), has been planted for more than 20 years now in Uruguay. Due to its good agronomic and oenological aptitudes under uruguayan conditions, it is currently the red variety with highest plantation rate. The objective of the study was to identify management practices, aimed at improving quality in highly productive vineyards, different fruit/leaf regulation methods were tested in southern Uruguay.