Terroir 2004 banner
IVES 9 IVES Conference Series 9 The role of the landscape as a component of the terroir in Spain (DO Somontano, NE Spain)

The role of the landscape as a component of the terroir in Spain (DO Somontano, NE Spain)

Abstract

The components and methodology for characterization of the terroir in Spain have been described by Gómez-Miguel et al. (2003), Sotés et al. (2003), taking into account the full range of environmental factors (i.e: climate, vegetation, topography, soils, altitude, etc.), landscape variables (derived from photo-interpretation and a digital elevation model), and variables specific to the country’s viticulture (i.e: size and distribution of the vineyards, varieties, phenology, productivity, quality, designation regulations, etc.). This paper describes the integration of the resulting database in a Geographic Information System (G.I.S.) that allows the spatial and statistical analysis of all variables; the parametric system of variable quantification; the selection of main endogenous and exogenous variables for terroir characterization; and the role of the variables that describe the landscape in the final results. The analysis has been carried out on over 1.8 million ha. This paper presents the results of a case study in the county “Somontano” that covers an expanse of 142,000 ha and includes 4,173 ha of vineyards. The observed distribution of vineyards in this county is correlated to the integrated landscape-terrain classification and productivity but does not depend on the total available area for cultivation. It is significant that a subset of geological formations that accounts for 45 percent of the total area sustains over 90 percent of the vineyards.
The results of the study have general implications for landscape-terrain classification in Spain and define a set of methodological guidelines. These guidelines refer to:
a) Definition of the set of variables that define the landscape: characterization of the lithological and morphological components; homogenization of lithological units; cartography of the geological formations; integration of a digital elevation model to derive altitude, orientation, exposure, and slope. The spatial scale should be at least 1:25.000.
b) Definition of the Homogeneous Land Units (HLU): The parameter characterization was carried out from the units which were previously defined from the data of the environmental analysis.
c) Experimental design: Selection of Homogeneous Land Units and characterization within the units.
d) Final zoning: Integration of the Homogeneous Land Unit with the plant (variety and rootstock) and the product (must and wine).

Related articles…

Impact of climate variability and change on grape yield in Italy

Viticulture is entangled with weather and climate. Therefore, areas currently suitable for grape production can be challenged by climate change. Winegrowers in Italy already experiences the effect of climate change, especially in the form of warmer growing season, more frequent drought periods, and increased frequency of weather extremes.
The aim of this study is to investigate the impact of climate variability and change on grape yield in Italy to provide winegrowers the information needed to make their business more sustainable and resilient to climate change. We computed a specific range of bioclimatic indices, selected by the International Organisation of Vine and Wine (OIV), and correlated them to grape yield data. We have worked in collaboration with some wine consortiums in northern and central Italy, which provided grape yield data for our analysis.
Using climate variables from the E-OBS dataset we investigate how the bioclimatic indices changed in the past, and the impact of this change on grape productivity in the study areas. The climate impact on productivity is also investigated by using high-resolution convection-permitting models (CPMs – 2.2 horizontal resolution), with the purpose of estimating productivity in future emission scenarios. The CPMs are likely the best available option for this kind of impact studies since they allow a better representation of small-scale processes and features, explicitly resolve deep convection, and show an improved representation of extremes. In our study, we also compare CPMs with regional climate models (RCMs – 12 km horizontal resolution) to assess the added value of high-resolution models for impact studies. Further development of our study will lead to assessing the future suitability for vine cultivation and could lead to the construction of a statistical model for future projection of grape yield.

When organic chemistry contributes to the understanding of metabolism mechanisms

Many compounds of interest in wine are difficult to analyze since they are present in very small quantities or they are unstable. The need for reliable data led scientists to develop complex method in order to overcome the analytical difficulties and provide accurate quantitative data for grape or wine characterization.

About validation of a method for the determination of volatile compounds in spirituous beverages using contained ethanol as a reference substance

The paper proposes an algorithm for validating a modified internal standard method using ethyl alcohol contained in the test sample as a reference substance.

Improvement of sparkling wines production by a zoning approach in Franciacorta (Lombardy, Italy)

Franciacorta is a viticultural area which extends in the hills to the South of Iseo lake in Lombardy. It is particularly famous for the production of sparkling wines obtained mostly from Chardonnay and Pinot blanc and noir grapes. The name of this territory is of medieval origin and appeared for the first time in 1277 as “Franzacurta”, from the Latin “franchae curtes”, i.e. “tax-free” monasteries. It was geographically delimited in 1429, when it was a territory of the Republic of Venezia.

Towards a regional mapping of vine water status based on crowdsourcing observations

Monitoring vine water status is a major challenge for vineyard management because it influences both yield and harvest quality. It is also a challenge at the territorial scale for identifying periods of high water restriction or zones regularly impacted by water stress. This information is of major importance for defining collective strategies, anticipating harvest logistic or applying for irrigation authorisation. At this spatial scale, existing tools and methods for monitoring vine water status are few and often require strong assumptions (e.g. water balance model). This paper proposes to consider a collaborative collection of observations by winegrowers and wine industry stakeholders (crowdsourcing) as an interesting alternative. Indeed, it allows the collection of a large number of field observations while pooling the collection effort. However, the feasibility of such a project and its interest in monitoring vine water status at regional scale has never been tested.

The objective of this article is to explore the possibility of making a regional map of vine water status based on crowdsourcing observations. It is based on the study of the free mobile application ApeX-Vigne, which allows the collection of observations about vine shoot growth. This information is easy to collect and can be considered, under certain conditions, as a proxy for vine water status. This article presents the first results obtained from the nearly 18,000 observations collected by winegrowers and wine industry stakeholders during 2019, 2020 and 2021 seasons. It presents the vine shoot growth maps obtained at regional scale and their evolution over the three vintages studied. It also proposes an analysis of the factors that favoured the number of observations collected and those that favoured their quality. These results open up new perspectives for monitoring vine water status at a regional scale but above they provide references for other crowdsourcing projects in viticulture.