Terroir 2004 banner
IVES 9 IVES Conference Series 9 Characterization of vine performance using remote sensing tools

Characterization of vine performance using remote sensing tools

Abstract

Today, a variety of remote sensing tools are used to characterise plant performance. However, the vine is rarely studied, as a major crop specificity is canopy discontinuity. Registered images of the vineyard are anisotropic, therefore difficult to analyse.
All current plant performance evaluation technologies pick up and record the energy of emitted or reflected electromagnetic radiation, and analyse information for later interpretation. Most importantly, they allow the expression of information in terms of spacial location. Application of these technologies in the vineyard differ considerably according to the tools used.
The different radiations recorded provide a wide range of information. The spectral behaviour of plant reflectance in the visible field (380 to 700 nm) is linked only to pigment composition. In this field, plants produce a low reflectance (around 15%) with a peak of 550 nm, mainly due to chlorophyll a and b pigments.
These pigments do not interfere with spectral response in the near-infrared field (750 to 1300 nm). The internal structure of leaf cells induces variations of the reflectance value. Estimating the health of the vine plant can be carried out utilising the near-infrared reflectance value. It is therefore possible to define different leaf indicators such as the Normalized Difference Vegetation Index (NDVI). Thermal infrared radiation values indicate the energetic and hydrous status of the plant. Measures of thermal infrared radiation can be taken on the ground, close to the plant, by means of a thermal infrared gun or by airborne shooting. From these, it is then possible to construct a water stress index. These data can then be exploited to analyse vineyard intraparcel heterogeneity. Data require the use of high resolution remote sensing tools (pixel representing a ground distance inferior to 20 cm).
Hyper-spectral bands, already used in cereal fields could reveal a spectral signature of diseases such as esca or eutypa before leaf symptoms are visible.
Whatever the captor, information quality depends on picture resolution. Today, the main difficulty in working on the vine comes from the anisotropic aspect of photographs. Above all, the researcher must be able to automatically distinguish vine rows. This is possible for vines growing on flat ground without grass but difficult for sloping vineyards with inter-row grass. The main risk lies in uniformly interpreting pixel values from different sources such as ground, grass or vine.
Different vehicles such as aeroplanes, satellites, helicopters and, of course, the vine grower’s tractor can be used, although not all captors can adapt to these different vehicles. In term of development, each captor/vehicle combination must be considered. Later, analysed and geo-referenced pictures will have to be integrated in the tractor onboard computer equipped with GPS. This is the way forward to allow tomorrow’s vine growers to apply real precision viticulture.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

J.P. Roby, E. Marguerit, O. Schemel, C. Germain, G. Grenier, C. Van Leeuwen

ENITA de Bordeaux, 1 cours du Général de Gaulle BP 201, 33175 Gradignan Cedex

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Understanding sweetness of dry wines: first evidence of astilbin isomers in red wines and quantitation in a one-century range of vintages

The gustatory balance of wines relies on sweetness, bitterness and sourness. In dry wines, sweetness does not result from the presence of residual sugar as in sweet wines, but is due to other non-volatile compounds. Such taste-active compounds are released during winemaking, by grapes, yeasts or oak wood and belong numerous chemical families [1]. Beyond this diversity, stereochemistry of molecules can also influence their sensory properties [2]. However, the molecular determinants associated with this taste have only been partially elucidated. Astilbin (2R, 3R) was recently reported to contribute to wine sweetness [3]. As its aglycon contains two stereogenic centers, three other stereoisomers may be present: neoisoastilbin (2S, 3R), isoastilbin (2R, 3S), and neoastilbin (2S, 3S). These compounds have already been observed in natural products, but never in wine. This work aimed at assaying their presence for the first time in wines as well as their taste properties.The isomers were synthesized from astilbin and purified by semi-preparative HPLC.

Roots and rhizosphere microbiota diversity is influenced by rootstock and scion genotypes: can this be linked to the development of the grafted plant?  

Soil is a reservoir of microorganisms playing important roles in biogeochemical cycles and interacting with plants whether in the rhizosphere or in the root endosphere. Through rhizodeposition, plants regulate their associated microbiome composition depending on the environment and plant factors, including genotypes. Since the phylloxera crisis, Vitis vinifera cultivars are mainly grafted onto American Vitis hybrids. Rootstocks play a pivotal role in the grapevine development, as the interface between the scion and the soil.

Exploring the influence of grapevine rootstock on yield components 

Yield is an agronomic trait that is critical to the sustained success and profitability of the wine industry. In the context of global warming, overall yield tends to decrease. Rootstock has been identified as a relevant lever for adaptation to changing environmental conditions. The aims of this study are; i) to finely identify the components of the yield influenced by rootstock; ii) to characterise the rootstock × scion interaction; iii) to understand the trade-off between vigour and yield.

Effect of early defoliation on volatile composition and sensory properties of aglianico red wines

The aim of this work was to study the influence of early defoliation in the vineyard on Aglianico wines quality from Apulia region (Italy). Early defoliation was conducted in commercial Aglianico

Exemples de zonage au Chili et en Amérique Latine

Ce document présente la situation viticole des appellations d’origine en Argentine, Brésil, Chili et Uruguay.
L’étude s’est restreinte uniquement à ces 4 pays, bien qu’il en existe d’autres avec une production viticole d’une certaine importance.