Terroir 2004 banner
IVES 9 IVES Conference Series 9 Characterization of vine performance using remote sensing tools

Characterization of vine performance using remote sensing tools

Abstract

Today, a variety of remote sensing tools are used to characterise plant performance. However, the vine is rarely studied, as a major crop specificity is canopy discontinuity. Registered images of the vineyard are anisotropic, therefore difficult to analyse.
All current plant performance evaluation technologies pick up and record the energy of emitted or reflected electromagnetic radiation, and analyse information for later interpretation. Most importantly, they allow the expression of information in terms of spacial location. Application of these technologies in the vineyard differ considerably according to the tools used.
The different radiations recorded provide a wide range of information. The spectral behaviour of plant reflectance in the visible field (380 to 700 nm) is linked only to pigment composition. In this field, plants produce a low reflectance (around 15%) with a peak of 550 nm, mainly due to chlorophyll a and b pigments.
These pigments do not interfere with spectral response in the near-infrared field (750 to 1300 nm). The internal structure of leaf cells induces variations of the reflectance value. Estimating the health of the vine plant can be carried out utilising the near-infrared reflectance value. It is therefore possible to define different leaf indicators such as the Normalized Difference Vegetation Index (NDVI). Thermal infrared radiation values indicate the energetic and hydrous status of the plant. Measures of thermal infrared radiation can be taken on the ground, close to the plant, by means of a thermal infrared gun or by airborne shooting. From these, it is then possible to construct a water stress index. These data can then be exploited to analyse vineyard intraparcel heterogeneity. Data require the use of high resolution remote sensing tools (pixel representing a ground distance inferior to 20 cm).
Hyper-spectral bands, already used in cereal fields could reveal a spectral signature of diseases such as esca or eutypa before leaf symptoms are visible.
Whatever the captor, information quality depends on picture resolution. Today, the main difficulty in working on the vine comes from the anisotropic aspect of photographs. Above all, the researcher must be able to automatically distinguish vine rows. This is possible for vines growing on flat ground without grass but difficult for sloping vineyards with inter-row grass. The main risk lies in uniformly interpreting pixel values from different sources such as ground, grass or vine.
Different vehicles such as aeroplanes, satellites, helicopters and, of course, the vine grower’s tractor can be used, although not all captors can adapt to these different vehicles. In term of development, each captor/vehicle combination must be considered. Later, analysed and geo-referenced pictures will have to be integrated in the tractor onboard computer equipped with GPS. This is the way forward to allow tomorrow’s vine growers to apply real precision viticulture.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

J.P. Roby, E. Marguerit, O. Schemel, C. Germain, G. Grenier, C. Van Leeuwen

ENITA de Bordeaux, 1 cours du Général de Gaulle BP 201, 33175 Gradignan Cedex

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Chitosan from mushroom by-products: sustainable extraction process and winemaking application

Chitosan is a biopolymer industrially obtained from the deacetylation of chitin, the second most abundant polysaccharide on earth, after cellulose. It is extracted from various terrestrial and marine resources, including insects, grasshoppers, shrimps, crabs, lobsters, squids, and fungi. chitosan has a polycationic character due to the free amine groups along its chemical backbone, and depending on its deacetylation degree (DD) and molecular weight (MW), it shows variable properties that differ from those of other natural polysaccharides.

Effects of fast dehydration at low temperature and relative humidity on the phenolic composition of Nebbiolo grapes

Grape postharvest dehydration is a widely used technique for the special wines production, where genetic features, ripeness degree and environmental factors strongly influence the metabolic processes [1].

Comparison of plant nutrients in the soil solution and bleeding sap of grapevine cvs

In this study macro and micro nutrients of plants (N = NH4 + NO3 , P, K, Ca, Na, Zn, Mn, Fe and Cu) were determined both in soil solution and bleeding sap and compared each other. Bleeding sap was collected from the nine varieties of grapevine Cvs. grafted on 5BB rootstock and grown in different soil conditions. For all varieties, plant nutrients content in bleeding sap as higher than in soil solution except for Ca and Na. While in soil solution Ca content was found at 10209 ppm, this value in bleeding sap was 49.20 ppm (Kozak Beyazy), 55.38 ppm (Trakya Ylkeren), 50.37 (Cardinal) and 74.27 ppm (Tekirdaô Çekirdeksizi) respectively. For the same varieties the Na values were as follows : 7.16 ppm (in soil solution) : 4.8, 3.23, 4.21,4.58 ppm (in bleeding sap) respectively. K content in bleeding sap was higher than in soil solution for a few varieties, and lower in some varieties. Traces of Fe and Cu were found in both media.

Characterization of simple polyphenols in seeds of autochthonous grapevine varieties grown in Croatia (Vitis vinifera L.)

Croatia has rich grapevine genetic resources with more than 125 autochthonous varieties preserved. Coastal region of Croatia, Dalmatia, is well known for wine production based on autochthonous grapevine varieties. Nevertheless, only couple of these are widely cultivated and have greater economic importance. Grape seeds are sources of polyphenols which play an important role in organoleptic and nutritional value of grape and wine. Hence, the aim of this study was to evaluate the simple polyphenols from grape seeds in 20 rare autochthonous grapevine varieties.

Effect of the shade generated by simulated solar panels in two row orientation on the physiology and productivity of Vitis vinifera L. cv. Malbec

Context and purpose of the study. In regions where grapevines are grown under irrigation, like most regions in Argentina, the wine industry should adopt more sustainable strategies and production systems towards a higher water use efficiency and a reduction in no-renewable energy consumption.