Terroir 2004 banner
IVES 9 IVES Conference Series 9 Characterization of vine performance using remote sensing tools

Characterization of vine performance using remote sensing tools

Abstract

Today, a variety of remote sensing tools are used to characterise plant performance. However, the vine is rarely studied, as a major crop specificity is canopy discontinuity. Registered images of the vineyard are anisotropic, therefore difficult to analyse.
All current plant performance evaluation technologies pick up and record the energy of emitted or reflected electromagnetic radiation, and analyse information for later interpretation. Most importantly, they allow the expression of information in terms of spacial location. Application of these technologies in the vineyard differ considerably according to the tools used.
The different radiations recorded provide a wide range of information. The spectral behaviour of plant reflectance in the visible field (380 to 700 nm) is linked only to pigment composition. In this field, plants produce a low reflectance (around 15%) with a peak of 550 nm, mainly due to chlorophyll a and b pigments.
These pigments do not interfere with spectral response in the near-infrared field (750 to 1300 nm). The internal structure of leaf cells induces variations of the reflectance value. Estimating the health of the vine plant can be carried out utilising the near-infrared reflectance value. It is therefore possible to define different leaf indicators such as the Normalized Difference Vegetation Index (NDVI). Thermal infrared radiation values indicate the energetic and hydrous status of the plant. Measures of thermal infrared radiation can be taken on the ground, close to the plant, by means of a thermal infrared gun or by airborne shooting. From these, it is then possible to construct a water stress index. These data can then be exploited to analyse vineyard intraparcel heterogeneity. Data require the use of high resolution remote sensing tools (pixel representing a ground distance inferior to 20 cm).
Hyper-spectral bands, already used in cereal fields could reveal a spectral signature of diseases such as esca or eutypa before leaf symptoms are visible.
Whatever the captor, information quality depends on picture resolution. Today, the main difficulty in working on the vine comes from the anisotropic aspect of photographs. Above all, the researcher must be able to automatically distinguish vine rows. This is possible for vines growing on flat ground without grass but difficult for sloping vineyards with inter-row grass. The main risk lies in uniformly interpreting pixel values from different sources such as ground, grass or vine.
Different vehicles such as aeroplanes, satellites, helicopters and, of course, the vine grower’s tractor can be used, although not all captors can adapt to these different vehicles. In term of development, each captor/vehicle combination must be considered. Later, analysed and geo-referenced pictures will have to be integrated in the tractor onboard computer equipped with GPS. This is the way forward to allow tomorrow’s vine growers to apply real precision viticulture.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

J.P. Roby, E. Marguerit, O. Schemel, C. Germain, G. Grenier, C. Van Leeuwen

ENITA de Bordeaux, 1 cours du Général de Gaulle BP 201, 33175 Gradignan Cedex

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Understanding vine response to Mediterranean summer stress for the development of adaptation strategies – in the kaolin case

In this video recording of the IVES science meeting 2023, Sara Bernardo (CITAB, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal) speaks about understanding vine response to Mediterranean summer stress for the development of adaptation strategies – in the kaolin case. This presentation is based on an original article accessible for free on OENO One.

Innovative sparkling wines, traditional grape varieties and autochthonous yeasts: emerging trends for regional products diversification

Italy, like all the major vine-growing and wine-producing countries, has experienced a decline in wine export volumes in recent years.

Effect of the commercial inoculum of arbuscular mycorrhiza in the establishment of a commercial vineyard of the cultivar “Manto negro

The favorable effect of symbiosis with arbuscular mycorrhizal fungi (AMF) has been known and studied since the 60s. Nowadays, many companies took the chance to start promoting and selling commercial inoculants of AMF, in order to be used as biofertilizers and encourage sustainable biological agriculture. However, the positive effect of these commercial biofertilizers on plant growth is not always demonstrated, especially under field conditions. In this study, we used a commercial inoculum on newly planted grapevines of a local cultivar grafted on a common rootstock R110. We followed the physiological status of vines, growth and productivity and functional biodiversity of soil bacteria during the first and second years of 20 inoculated with commercial inoculum bases on Rhizophagus irregularis and Funeliformis mosseaeAMF at field planting time and 20 non-inoculated control plants. All the parameters measured showed a neutral to negative effect on plant growth and production. The inoculated plants always presented lower values of photosynthesis, growth and grape production, although in some cases the differences did not reach statistical significance. On the contrary, the inoculation supposed an increase of the bacterial functional diversity, although the differences were not statistically significant either. Several studies show that the effect of inoculation with AMF is context-dependent. The non-favorable effects are probably due to inoculation ineffectiveness under complex field conditions and/or that, under certain conditions, AMF presence may be a parasitic association. This puts into question the effectiveness of its application in the field. Therefore, it is recommended to only resort to this type of biofertilizer when the cultivation conditions require it (e.g., very low previous microbial diversity, foreseeable stress due to drought, salinity, or lack of nutrients) and not as a general fertilization practice.

Dormancy conundrum: thermal requirements plasticity to reach budburst may be explained by annual environmental dynamics

Deciphering grapevine dormancy is crucial in the current context of climatic challenges: advancing budburst phenology and increased late frost probabilities, observed in the last decades and expected to further increase, require deeper understanding. Beyond higher mean temperatures, abiotic stresses such as water deficit have also been emphasized as actors. In this framework, we aimed at exploring new methodologies for tracking dormancy cycle and testing the interplay on its regulation of temperature dynamics and drought.
In a first experiment, twenty-one Vitis vinifera varieties were monitored during ecodormancy and budburst over three years.

The impact of vine nitrogen status on aroma potential expression in Vitis vinifera L. cv. Sauvignon blanc

In interaction with climate and genetic or human factors, the soil is a major component of the viticulture terroir. The mineral composition of the soil influences vine performance and wine sensory attributes. Among the elements that vines take from the soil, nitrogen is the one that has the strongest impact on vine physiology, vigor and grape composition. In addition to its major effect on primary metabolites in berries, nitrogen plays also a decisive role in the secondary metabolism, especially in the production of key compounds for berries quality, like volatile thiols, methoxypyrazines and glutathione (GSH).