Terroir 2004 banner
IVES 9 IVES Conference Series 9 Characterization of vine performance using remote sensing tools

Characterization of vine performance using remote sensing tools

Abstract

Today, a variety of remote sensing tools are used to characterise plant performance. However, the vine is rarely studied, as a major crop specificity is canopy discontinuity. Registered images of the vineyard are anisotropic, therefore difficult to analyse.
All current plant performance evaluation technologies pick up and record the energy of emitted or reflected electromagnetic radiation, and analyse information for later interpretation. Most importantly, they allow the expression of information in terms of spacial location. Application of these technologies in the vineyard differ considerably according to the tools used.
The different radiations recorded provide a wide range of information. The spectral behaviour of plant reflectance in the visible field (380 to 700 nm) is linked only to pigment composition. In this field, plants produce a low reflectance (around 15%) with a peak of 550 nm, mainly due to chlorophyll a and b pigments.
These pigments do not interfere with spectral response in the near-infrared field (750 to 1300 nm). The internal structure of leaf cells induces variations of the reflectance value. Estimating the health of the vine plant can be carried out utilising the near-infrared reflectance value. It is therefore possible to define different leaf indicators such as the Normalized Difference Vegetation Index (NDVI). Thermal infrared radiation values indicate the energetic and hydrous status of the plant. Measures of thermal infrared radiation can be taken on the ground, close to the plant, by means of a thermal infrared gun or by airborne shooting. From these, it is then possible to construct a water stress index. These data can then be exploited to analyse vineyard intraparcel heterogeneity. Data require the use of high resolution remote sensing tools (pixel representing a ground distance inferior to 20 cm).
Hyper-spectral bands, already used in cereal fields could reveal a spectral signature of diseases such as esca or eutypa before leaf symptoms are visible.
Whatever the captor, information quality depends on picture resolution. Today, the main difficulty in working on the vine comes from the anisotropic aspect of photographs. Above all, the researcher must be able to automatically distinguish vine rows. This is possible for vines growing on flat ground without grass but difficult for sloping vineyards with inter-row grass. The main risk lies in uniformly interpreting pixel values from different sources such as ground, grass or vine.
Different vehicles such as aeroplanes, satellites, helicopters and, of course, the vine grower’s tractor can be used, although not all captors can adapt to these different vehicles. In term of development, each captor/vehicle combination must be considered. Later, analysed and geo-referenced pictures will have to be integrated in the tractor onboard computer equipped with GPS. This is the way forward to allow tomorrow’s vine growers to apply real precision viticulture.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

J.P. Roby, E. Marguerit, O. Schemel, C. Germain, G. Grenier, C. Van Leeuwen

ENITA de Bordeaux, 1 cours du Général de Gaulle BP 201, 33175 Gradignan Cedex

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

How sensory quality of wines can be accessed as a trait in MAS grape vine breeding

In the context of the global crises of global warming, biodiversity and pollution, current agricultural practices need to be reconsidered.

La zonazione della valle d’Illasi (Verona)

In the bottom of Val d’Illasi (Verona province), one of the major valleys which passes through the Lessini mountains, viticulture is widely extended. In the territory belonging to Illasi and Tregnago villages, which includes ca. 1100 ha of vineyards, devoted to produce Soave and Valpolicella DOC wines, an experimental survey was conducted on a network of twenty five reference vineyards.

Mechanisms involved in the heating of the environment by the aerodynamic action of a wind machine to protect a vineyard against spring frost

One of the main consequences of global warming is the rise of the mean temperature. Thus, the heat summation by the plants begins sooner in the early spring, and by cumulating growing degree-days, phenological development tends to happen earlier. However, spring frost is still a recurrent phenomenon causing serious damages to buds and therefore, threatening the harvests of the winegrowers. The wind machine is a solution to protect fruit crops against spring frost that is increasingly used. It is composed of a 10-m mast with a blowing fan at its peak. By tapping into the strength of the nocturnal thermal inversion, it sweeps the crop by propelling warm air above to the ground. Thus, stratification is momentarily suppressed. Furthermore, the continuous action of the machine, alone or in synergy, or the addition of a heater allow the bud to be bathed in a warmer environment. Also, the punctual action of the tower’s warm gust reaches the bud directly at each rotation period. All these actions allow the bud to continuously warm up, but with different intensities and over a different period. Although there is evidence of the effectiveness of the wind machines, the thermal transfers involved in those mechanisms raise questions about their true nature. Field measurements based on ultrasonic anemometers and fast responding thermocouples complemented by laboratory measurements on a reduced scale model allow to characterize both the airflow produced by the wind machine and the local temperature in its vicinity. Those experiments were realized in the vineyard of Quincy, in the framework of the SICTAG project. In the future paper, we will detail the aeraulic characterization of the wind machine and the thermal effects resulting from it and we will focus on how the wind machine warms up the local atmosphere and enables to reduce the freezing risk.

The terroir of winter hardiness: a three year investigation of spatial variation in winter hardiness, water status, yield, and berry composition of riesling in the niagara region using geomatic technologies

Grapevine winter hardiness is a key factor in vineyard success in many cool climate wine regions. Winter hardiness may be governed by several factors in addition to extreme weather conditions – e.g. soil factors (texture, chemical composition, moisture, drainage), vine water status, and yield– that are unique to each site.

A few observations on double sigmoid fruit growth

Many fleshy fruit, including the grape berry, exhibit a double‐sigmoid growth (DSG) pattern. Identification of the curious DSG habit has long been attributed to Connors’ (1919) work with peaches