Terroir 2004 banner
IVES 9 IVES Conference Series 9 Characterization of vine performance using remote sensing tools

Characterization of vine performance using remote sensing tools

Abstract

Today, a variety of remote sensing tools are used to characterise plant performance. However, the vine is rarely studied, as a major crop specificity is canopy discontinuity. Registered images of the vineyard are anisotropic, therefore difficult to analyse.
All current plant performance evaluation technologies pick up and record the energy of emitted or reflected electromagnetic radiation, and analyse information for later interpretation. Most importantly, they allow the expression of information in terms of spacial location. Application of these technologies in the vineyard differ considerably according to the tools used.
The different radiations recorded provide a wide range of information. The spectral behaviour of plant reflectance in the visible field (380 to 700 nm) is linked only to pigment composition. In this field, plants produce a low reflectance (around 15%) with a peak of 550 nm, mainly due to chlorophyll a and b pigments.
These pigments do not interfere with spectral response in the near-infrared field (750 to 1300 nm). The internal structure of leaf cells induces variations of the reflectance value. Estimating the health of the vine plant can be carried out utilising the near-infrared reflectance value. It is therefore possible to define different leaf indicators such as the Normalized Difference Vegetation Index (NDVI). Thermal infrared radiation values indicate the energetic and hydrous status of the plant. Measures of thermal infrared radiation can be taken on the ground, close to the plant, by means of a thermal infrared gun or by airborne shooting. From these, it is then possible to construct a water stress index. These data can then be exploited to analyse vineyard intraparcel heterogeneity. Data require the use of high resolution remote sensing tools (pixel representing a ground distance inferior to 20 cm).
Hyper-spectral bands, already used in cereal fields could reveal a spectral signature of diseases such as esca or eutypa before leaf symptoms are visible.
Whatever the captor, information quality depends on picture resolution. Today, the main difficulty in working on the vine comes from the anisotropic aspect of photographs. Above all, the researcher must be able to automatically distinguish vine rows. This is possible for vines growing on flat ground without grass but difficult for sloping vineyards with inter-row grass. The main risk lies in uniformly interpreting pixel values from different sources such as ground, grass or vine.
Different vehicles such as aeroplanes, satellites, helicopters and, of course, the vine grower’s tractor can be used, although not all captors can adapt to these different vehicles. In term of development, each captor/vehicle combination must be considered. Later, analysed and geo-referenced pictures will have to be integrated in the tractor onboard computer equipped with GPS. This is the way forward to allow tomorrow’s vine growers to apply real precision viticulture.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

J.P. Roby, E. Marguerit, O. Schemel, C. Germain, G. Grenier, C. Van Leeuwen

ENITA de Bordeaux, 1 cours du Général de Gaulle BP 201, 33175 Gradignan Cedex

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Carry over effect of shoot trimming and deficit irrigation on fruit yield and berry total soluble solids

The increase in air temperature that is occurring in many important wine-growing areas around the world is resulting in the decoupling between the phenolic and the technological maturity of grapevine berries. This new ripening pattern leads to the production of light-bodied high alcoholic wines, but this is in countertendency with the increasing consumers’ demand for wines with low-to-mid alcohol concentrations. The oenological techniques proposed to reduce wine alcohol content are often very expensive and lead to detrimental effects on wine quality. Many viticultural practices have been proposed to slow down sugar accumulation the berry. One possible strategy that was previously found to be suitable for Aglianico grapevine is post-veraison shoot trimming. The aim of this work was to assess the carry over effects on the following year of shoot trimming and vine water status on yield and total soluble solids because the expected reduction in vine fertility could lead to a reduction in the effectiveness of shoot trimming.

Nitrogen partitioning among vine organs as a consequence of cluster thinning

Agroscope is investigating the impact of yield on nitrogen (N) partitioning in grapevine and on must composition. The mechanism of N assimilation

Aromatic complexity in Verdicchio wines: a case study

In this video recording of the IVES science meeting 2021, Fulvio Mattivi (Fondazione Edmund Mach, Centro Ricerca ed Innovazione, San Michele all’Adige, Italy) speaks about the effects of water deficit on secondary metabolites in grapes and wines. This presentation is based on an original article accessible for free on OENO One.

The influence of culture medium on the dynamics of fermentation of wine yeasts

Wine yeast strains Saccharomyces ellipsoideus have important applications in food industry and in this regard is sought isolation as pure cultures and selecting those strains, which in laboratory investigations which have great biotechnological properties This study was intended as the ratio of live cells and autolysates cells also the influence of culture medium on this report. Yeasts selected for this study were isolated from industrial strains of indigenous grape varieties, namely: Feteasca Royal (FR) Feteasca White (FA), black Feteasca (FN), Romanian Tamaioasa (TR), Babeasca Black (BN) and Cotnari Grasa (GC).

The geological and geomorphological events that determine the soil functional characters of a terroir

The geology of a region is deemed to be an important component of terroir, as it influences the shape of the landscape and the climate of vineyard. The nature of rock and the geomorphological history of a terroir affect soil physical and chemical composition through a dynamic interplay with the changes of climate, vegetation and other living organisms, as well as with man activities.