Terroir 2004 banner
IVES 9 IVES Conference Series 9 Climate and mesoclimate zonification in the Miño valley (Galicia, NW Spain)

Climate and mesoclimate zonification in the Miño valley (Galicia, NW Spain)

Abstract

[English version below]

Galicia est une région située dans le Nord-Ouest de l’Espagne avec une longe tradition de culture de la vigne. A jour d’oui la vigne occupe en Galicia presque 28.500 ha, desquelles 8.100 correspondent aux 5 zones ayant droit à l’appellation DO (« Denominación de Origen ») équivalent aux AOC françaises. Les vignobles sont souvent localisés dans la partie moyenne et méridionale de la Vallée du Miño, bien que s’élaborent aussi vins de qualité dans les rivages atlantiques du sud-ouest et au val du Támega dans l’extrême sud-est. Le climat général est du type maritime tempéré avec d’influences océaniques que petit a petit sont remplacées pour des influences méditerranéennes et continentales, vers le sud et l’est de la région.
Le but de ce travail est évaluer les limites des DO galiciennes, en tenant conte l’évolution des techniques et indices de zonage climatique.
En préliminaire, les conditions climatiques ont été précisées d’un point de vue statistique (stations météo au sein des aires viticoles et stations limitrophes). Puis, plusieurs indices bioclimatiques proposées par la littérature vitivinicole ont été calcules. Le calcul a été opéré aussi sur les données apportées au cours des dernières 5 années pour le nouveau réseau de stations automatiques du Gouvernement régional.
L’élaboration et l’interprétation des résultats de l’analyse statistique ont permit de définir quatre zones agroclimatiques bien différentes au point de vue climatique. Ces résultats démontrent aussi que dans la DO Rías Baixas, il y a au moins deux zones avec conditions climatiques assez différentes. En outre, les données apportées par les nouvelles stations automatiques, on permit d’identifier quelques zones climatiques similaires -à l’échelle de mesoclimat- à l’intérieur des DO traditionnelles.

Galicia is a region in Northwest Spain and has a long viticulture heritage. Today about 28,500 hectares are dedicated to vine growing and, of these, 8.100 has are protected under 5 distinct denominations of origin. Most of these zones are situated in the southern and central part of the region in and around the river Miño valley. Some high quality wines are also produced on the southwest coast and in the river Támega valley. The climate of this area is mild, fresh maritime with strong influences from the Atlantic which gradually give way to Mediterranean and continental inland tendencies as one goes inland to the East.
The main aim of this article is to demonstrate the suitability of the classification of today’s Galician AOCs given the latest information on the field of Climatic Zoning.
For this purpose, standardized climate data provided by the Spanish and the Galician meteorological services have been utilized as well as data provided over the last five years by a new network of automatic weather posts that complete the previous network.
These data were used to calculate as series of climatic indices according to various methodologies. This information was later processed statistically to identify the most relevant factors in the differentiation of the vine growing areas.
Results confirmed the existence of four very clearly defined different viticulture climates. It was also shown that within the vine-growing zone of the Rías Baixas at least two sectors exist with quite distinct climatic conditions. Furthermore, the statistic processing of the information provided by the new automatic weather stations advanced research in climatic zoning permitting the identification of a series of typical mesoclimates that appear within the interior of the traditional viticulture zones.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

D. Blanco, C., Alvarez, M.P., García, and J.M., Queijeiro

Vigo University, Plant Biology and Soil Science Department, Ourense Science Faculty, As Lagoas s/n 32004 Ourense, Spain

Contact the author

Keywords

Viticultural climatic characterization, viticultural zoning, mesoclimates, climatic indices

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Berry maturity effects on physic and chemical characteristics of traditional sparkling wines produced from Chardonnay and Sauvignon blanc grapes.

One of the consequences of global warming is the quick berry development giving rise to a disconnection between sugar accumulation and the formation of important quality minor compounds such as phenolics and volatile compounds being a huge challenge for the oenologist [1]. Thus, this phenomenon is forcing the search on strategies for maintaining the quality of wines despite this situation. One possibility is to make an early harvest with a low sugar concentration (18ºbrix) and advanced harvest for sparkling wine (20-21ºbrix) and afterwards to combine base wines properly and carry out the second fermentation trying to compensate the lack of secondary metabolites due to the quick berry development and higher alcohol degree of the second one, not adequate itself for sparkling wine. The aim of this study was to assess the chemical and physical characteristics, mainly volatile profile, and foaming properties of sparkling wines from grapes of Chardonnay and Sauvignon blanc.

Genotypic differences in early-stage root architectural traits and consequences for water uptake in three grapevine rootstocks differing in drought tolerance

Root architecture (RSA), the spatial-temporal arrangement of a root system in soil, is essential for edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The aims of this study were (i) to determine the phenotypic differences in traits related to root distribution and morphology along the substrate profile in different Vitis rootstocks during early growth, (ii) to assess the plasticity of these traits to soil water deficit and (iii) to quantify their relationships with plant water uptake.

Bioprotective effect of a Torulaspora delbrueckii/Lachancea thermotolerans mixed inoculum and its impact on wines made.

SO2 is an additive widely used as antimicrobial in winemaking industry. However, this compound can negatively affect health, so the search for alternatives is currently a line of research of great interest. One of the proposed alternatives to SO2 as an antimicrobial is the use of bioprotection yeasts, which colonize the medium preventing the proliferation of undesirable microorganisms.

Challenges for the Implementation of commercial inoculum of arbuscular fungi in a commercial Callet vineyard (Vitis vinifera L.)

Over the past 70 years, scientific literature has consistently illustrated the advantageous effects of arbuscular mycorrhiza fungi (AMF) on plant growth and stress tolerance. Recent reviews not only reaffirm these findings but also underscore the pivotal role of AMF in ensuring the sustainability of viticulture. In fact, various companies actively promote commercial inoculants based on AMF as biofertilizers or biostimulants for sustainable viticulture. However, despite the touted benefits of these products, the consistent effectiveness of AMF inoculants in real-world field conditions remains uncertain.

Investigating perceptual interactions of fruity aromas in Bordeaux red wines through addition and reconstitution sensory studies

Fruity aromas, characterized by red and black fruit descriptors, are central to the identity of Bordeaux red wines [1,2]. Despite extensive research focused on identifying and quantifying volatile compounds that contribute to fruity aromas in wine, the mechanisms underlying their interactions and sensory perception remain poorly understood [3].