Terroir 2004 banner
IVES 9 IVES Conference Series 9 Climate and mesoclimate zonification in the Miño valley (Galicia, NW Spain)

Climate and mesoclimate zonification in the Miño valley (Galicia, NW Spain)

Abstract

[English version below]

Galicia est une région située dans le Nord-Ouest de l’Espagne avec une longe tradition de culture de la vigne. A jour d’oui la vigne occupe en Galicia presque 28.500 ha, desquelles 8.100 correspondent aux 5 zones ayant droit à l’appellation DO (« Denominación de Origen ») équivalent aux AOC françaises. Les vignobles sont souvent localisés dans la partie moyenne et méridionale de la Vallée du Miño, bien que s’élaborent aussi vins de qualité dans les rivages atlantiques du sud-ouest et au val du Támega dans l’extrême sud-est. Le climat général est du type maritime tempéré avec d’influences océaniques que petit a petit sont remplacées pour des influences méditerranéennes et continentales, vers le sud et l’est de la région.
Le but de ce travail est évaluer les limites des DO galiciennes, en tenant conte l’évolution des techniques et indices de zonage climatique.
En préliminaire, les conditions climatiques ont été précisées d’un point de vue statistique (stations météo au sein des aires viticoles et stations limitrophes). Puis, plusieurs indices bioclimatiques proposées par la littérature vitivinicole ont été calcules. Le calcul a été opéré aussi sur les données apportées au cours des dernières 5 années pour le nouveau réseau de stations automatiques du Gouvernement régional.
L’élaboration et l’interprétation des résultats de l’analyse statistique ont permit de définir quatre zones agroclimatiques bien différentes au point de vue climatique. Ces résultats démontrent aussi que dans la DO Rías Baixas, il y a au moins deux zones avec conditions climatiques assez différentes. En outre, les données apportées par les nouvelles stations automatiques, on permit d’identifier quelques zones climatiques similaires -à l’échelle de mesoclimat- à l’intérieur des DO traditionnelles.

Galicia is a region in Northwest Spain and has a long viticulture heritage. Today about 28,500 hectares are dedicated to vine growing and, of these, 8.100 has are protected under 5 distinct denominations of origin. Most of these zones are situated in the southern and central part of the region in and around the river Miño valley. Some high quality wines are also produced on the southwest coast and in the river Támega valley. The climate of this area is mild, fresh maritime with strong influences from the Atlantic which gradually give way to Mediterranean and continental inland tendencies as one goes inland to the East.
The main aim of this article is to demonstrate the suitability of the classification of today’s Galician AOCs given the latest information on the field of Climatic Zoning.
For this purpose, standardized climate data provided by the Spanish and the Galician meteorological services have been utilized as well as data provided over the last five years by a new network of automatic weather posts that complete the previous network.
These data were used to calculate as series of climatic indices according to various methodologies. This information was later processed statistically to identify the most relevant factors in the differentiation of the vine growing areas.
Results confirmed the existence of four very clearly defined different viticulture climates. It was also shown that within the vine-growing zone of the Rías Baixas at least two sectors exist with quite distinct climatic conditions. Furthermore, the statistic processing of the information provided by the new automatic weather stations advanced research in climatic zoning permitting the identification of a series of typical mesoclimates that appear within the interior of the traditional viticulture zones.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

D. Blanco, C., Alvarez, M.P., García, and J.M., Queijeiro

Vigo University, Plant Biology and Soil Science Department, Ourense Science Faculty, As Lagoas s/n 32004 Ourense, Spain

Contact the author

Keywords

Viticultural climatic characterization, viticultural zoning, mesoclimates, climatic indices

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Towards a better understanding of cultivar susceptibility to esca disease: results from a pluriannual common garden monitoring

Grapevine (Vitis vinifera L.) exhibits a high level of genetic and phenotypic diversity among the approximately 6000 cultivars recorded. This perennial crop is highly vulnerable to numerous fungal diseases, including esca, which is a complex vascular pathology that poses a significant threat to the wine sector, as there is currently no cost-efficient curative method[1]. In this context, an effective approach to mitigate the impact of such diseases is by leveraging the crop’s genetic diversity. Indeed, susceptibility to esca disease appears to vary between cultivars, under artificial or natural infection. However, the mechanisms and varietal characteristics underlying cultivar susceptibility to esca are still unknown.

Exploring the impact of grape pressing on must and wine composition

Pressing has a relevant impact on the characteristics of the must and subsequently on white wines produced [1]. Therefore, the adequate management of pressing can lead to the desired extraction of phenols and other grape compounds (i.e. Organic acids), aromas and their precursors, allowing the production of balanced wines [2]. This aspect is especially important to sparkling wine where the acidity and pH, and the content of phenols affect its longevity and the expected sensory character.

EFFECT OF MANNOPROTEIN-RICH EXTRACTS FROM WINE LEES ON PHENOLICCOMPOSITION AND COLOUR OF RED WINE

In 2022, wine production was estimated at around 260 million hl. This high production rate implies to generate a large amount of by-products, which include grape pomace, grape stalks and wine lees. It is estimated that processing 100 tons of grapes leads to ~ 22 tons of by-products from which ~ 6 tons are lees [1]. Wine lees are a sludge-looking material mostly made of dead and living yeast cells, yeast debris and other particles that precipitate at the bottom of wine tanks after alcoholic fermentation. Unlike grape pomace or grape stalks, few strategies have been proposed for the recovery and valorisation of wine less [2].

From vine to wine : a multi-trait experiment for increasing the varietal diversity in the bordeaux wine region. How to adapt to climate change without damaging terroir expression?

Context and purpose of the study climate change is impacting wine typicity across the globe, raising concerns in wine regions historically renowned for the quality of their terroir. Replacing some of the plant material can be an efficient lever for adapting to climate change. However, the change of cultivars also raises questions about the region’s wine typicity. This study, based on seven years of data, investigates the potential adaptability of over 50 different varieties in the bordeaux wine region.

Postveraison shoot trimming in Tannat and Merlot: preliminary results on yield components, plant balance and berry composition

There is currently a trend towards the production of wines with low alcohol content. To achieve this, grapes with low sugar content must be used. There are techniques at the vineyard level that can delay ripening and avoid excessive sugar accumulation without, a priori, affecting the final polyphenol content. Postveraison shoot trimming (PVST) is experimentally evaluated for these purposes, but its impact under Uruguayan climatic conditions with high interannual variability is not known. The aim of this work is to assess the PVST in Tannat and Merlot cultivars and their impact on yield components, plant balance and berry primary composition. In this study, two commercial vineyards of 10 years old Tannat and Merlot (grafted on SO4) at Canelones Department were selected. During the 2020-201 growing season, grapevines were submitted to PVST when grapes reached 15º Brix. In a randomized block, trimmed (T) and control (C) plants were evaluated with three repetitions each cultivar. Evaluation of the evolution of primary berry composition during ripening, measurement of yield components and plant balance were performed. For both cultivars, PVST did not affect yield components. Merlot reached 5.4 kg per plant and Tannat 7.1 kg, with not statistical significance between treatments. However, statistical differences were observed in terms of plant balance. In Merlot Ravaz Index reached a difference of 5.3 (12.0 in T and 6.7 in C) meanwhile Tannat reached 3.5 of statistical difference (13.7 in T and 10.2 in C). The tendency to imbalance for the treated plants had an impact on the final grape composition. Merlot grapes showed statistical difference in final total acidity (0.3 g of difference between treatments) while treatments impact final sugar content on Tannat grapes (10.0 g of difference between treatments). Further studies are needed to assess the impact of different canopy management techniques in our conditions.