Terroir 2004 banner
IVES 9 IVES Conference Series 9 Climate and mesoclimate zonification in the Miño valley (Galicia, NW Spain)

Climate and mesoclimate zonification in the Miño valley (Galicia, NW Spain)

Abstract

[English version below]

Galicia est une région située dans le Nord-Ouest de l’Espagne avec une longe tradition de culture de la vigne. A jour d’oui la vigne occupe en Galicia presque 28.500 ha, desquelles 8.100 correspondent aux 5 zones ayant droit à l’appellation DO (« Denominación de Origen ») équivalent aux AOC françaises. Les vignobles sont souvent localisés dans la partie moyenne et méridionale de la Vallée du Miño, bien que s’élaborent aussi vins de qualité dans les rivages atlantiques du sud-ouest et au val du Támega dans l’extrême sud-est. Le climat général est du type maritime tempéré avec d’influences océaniques que petit a petit sont remplacées pour des influences méditerranéennes et continentales, vers le sud et l’est de la région.
Le but de ce travail est évaluer les limites des DO galiciennes, en tenant conte l’évolution des techniques et indices de zonage climatique.
En préliminaire, les conditions climatiques ont été précisées d’un point de vue statistique (stations météo au sein des aires viticoles et stations limitrophes). Puis, plusieurs indices bioclimatiques proposées par la littérature vitivinicole ont été calcules. Le calcul a été opéré aussi sur les données apportées au cours des dernières 5 années pour le nouveau réseau de stations automatiques du Gouvernement régional.
L’élaboration et l’interprétation des résultats de l’analyse statistique ont permit de définir quatre zones agroclimatiques bien différentes au point de vue climatique. Ces résultats démontrent aussi que dans la DO Rías Baixas, il y a au moins deux zones avec conditions climatiques assez différentes. En outre, les données apportées par les nouvelles stations automatiques, on permit d’identifier quelques zones climatiques similaires -à l’échelle de mesoclimat- à l’intérieur des DO traditionnelles.

Galicia is a region in Northwest Spain and has a long viticulture heritage. Today about 28,500 hectares are dedicated to vine growing and, of these, 8.100 has are protected under 5 distinct denominations of origin. Most of these zones are situated in the southern and central part of the region in and around the river Miño valley. Some high quality wines are also produced on the southwest coast and in the river Támega valley. The climate of this area is mild, fresh maritime with strong influences from the Atlantic which gradually give way to Mediterranean and continental inland tendencies as one goes inland to the East.
The main aim of this article is to demonstrate the suitability of the classification of today’s Galician AOCs given the latest information on the field of Climatic Zoning.
For this purpose, standardized climate data provided by the Spanish and the Galician meteorological services have been utilized as well as data provided over the last five years by a new network of automatic weather posts that complete the previous network.
These data were used to calculate as series of climatic indices according to various methodologies. This information was later processed statistically to identify the most relevant factors in the differentiation of the vine growing areas.
Results confirmed the existence of four very clearly defined different viticulture climates. It was also shown that within the vine-growing zone of the Rías Baixas at least two sectors exist with quite distinct climatic conditions. Furthermore, the statistic processing of the information provided by the new automatic weather stations advanced research in climatic zoning permitting the identification of a series of typical mesoclimates that appear within the interior of the traditional viticulture zones.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

D. Blanco, C., Alvarez, M.P., García, and J.M., Queijeiro

Vigo University, Plant Biology and Soil Science Department, Ourense Science Faculty, As Lagoas s/n 32004 Ourense, Spain

Contact the author

Keywords

Viticultural climatic characterization, viticultural zoning, mesoclimates, climatic indices

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

La zonazione della D.O.C. Bolgheri (Castagneto C.): aspetti metodologici ed applicativi

The results of the first step of the zoning study carried out in Bolghery appellation area (Castagneto Carducci, Tuscany) in the 1993-1995 period have been recently published. Quality factors of Bolgheri appellation and different “terroirs ” were identified.

Implications of the nature of organic mulches used in vineyards on grapevine water status, yield, berry quality and biological soil health  

Climate emergency is going to affect the agricultural suistainability, wine grapes being probably one of the crops more sensitive to environmental constraints. In this context, mitigation strategies such as the revalorization of agricultural wastes are paramount to cope with the current challenges. The use of organic mulches has been reported to reduce soil water evaporation and improve vine water status, reduce soil erosion, and increase soil organic matter with little impact on berry quality. However, less is known about their effects on the microbiote of vineyards.

Proposal of zonification and characterization of terroirs in the Yalde-Najerilla-Uruñuela vine growing area (DOC Rioja, Spain), based on the soil influence

Natural Terroir Units (NTU) are being delimited in vine growing area DOCa Rioja, in collaboration with Uruñuela Cooperative, to characterized specific and singular Tempranillo (Vitis vinifera

Deconstructing the soil component of terroir: from controversy to consensus

Wine terroir describes the collectively recognized relation between a geographical area and the distinctive organoleptic characteristics of the wines produced in it. The overriding objective in terroir studies is therefore to provide scientific proof relating the properties of terroir components to wine quality and typicity. In scientific circles, the role of climate (macro-, meso- and micro-) on grape and wine characteristics is well documented and accepted as the most critical. Moreover, there has been increasing interest in recent years about new elements with possible importance in shaping wine terroir like berry/leaf/soil microbiology or even aromatic plants in proximity to the vineyard conferring flavors to the grapes. However, the actual effect of these factors is also dependent on complex interactions with plant material (variety/clone, rootstock, vine age) and with human factors.
The contribution of soil, although a fundamental component of terroir and extremely popular among wine enthusiasts, remains a much-debated issue among researchers. The role of geology is probably the one mostly associated by consumers with the notion of terroir with different parent rocks considered to give birth to different wine styles. However, the relationship between wine properties and the underlying parent material raises a lot of controversy especially regarding the actual existence of rock-derived flavors in the wine (e.g. minerality). As far as the actual soil properties are concerned, the effect of soil physical properties is generally regarded as the most significant (e.g sandy soils being associated with lighter wines while those on clay with colored and tannic ones) mostly through control of water availability which ultimately modifies berry ripening conditions either directly by triggering biosynthetic pathways, or indirectly by altering vigor and yield components. The role of soil chemistry seems to be weakly associated to wine sensory characteristic, although N, K, S and Ca, but also soil pH, are often considered important in the overall soil effect.
Recently, in the light of evidence provided by precision agriculture studies reporting a high variability of vineyard soils, the spatial scale should also be taken into consideration in the evaluation of the soil effects on wines. While it is accepted that soil effects become more significant than climate on a local level, it is not clear whether these micro-variations of vineyard soils are determining in the terroir effect. Moreover, as terroir is not a set of only natural factors, the magnitude of the contribution of human-related factors (irrigation, fertilization, soil management) to the soil effect still remains ambiguous. Lastly, a major shortcoming of the majority of works about soil effects on wine characteristics is the absence of connection with actual vine physiological processes since all soil effects on grape and wine chemistry and sensorial properties are ultimately mediated through vine responses.
This article attempts to breakdown the main soil attributes involved in the terroir effect to suggest an improved understanding about soil’s true contribution to wine sensory characteristics. It is proposed that soil parameters per se are not as significant determining factors in the terroir effect but rather their mutual interactions as well as with other natural and human factors included in the terroir concept. Consequently, similarly to bioclimatic indices, composite soil indices (i.e. soil depth, water holding capacity, fertility, temperature etc), incorporating multiple soil parameters, might provide a more accurate and quantifiable means to assess the relative weight of the soil component in the terroir effect.

Somatic embryogenesis and polyploidy in grapevine: morphological shoot and leaf traits variations

Somatic embryogenesis (SE) has been used in a variety of biotechnology applications such as virus elimination, cryopreservation, induced mutagenesis and genetic transformation. The SE induction process may cause DNA alterations and ploidy changes, which may provide a source of genetic variability useful for the improvement of agronomic characteristics of plants. This research aims at investigating the spontaneous alterations of the genome in grapevine plants regenerated through SE. Regenerants obtained from different embryogenic events from three different grapevine genotypes (Catarratto, Frappato and Nero d’Avola) were analysed.