Terroir 2004 banner
IVES 9 IVES Conference Series 9 Climate and mesoclimate zonification in the Miño valley (Galicia, NW Spain)

Climate and mesoclimate zonification in the Miño valley (Galicia, NW Spain)

Abstract

[English version below]

Galicia est une région située dans le Nord-Ouest de l’Espagne avec une longe tradition de culture de la vigne. A jour d’oui la vigne occupe en Galicia presque 28.500 ha, desquelles 8.100 correspondent aux 5 zones ayant droit à l’appellation DO (« Denominación de Origen ») équivalent aux AOC françaises. Les vignobles sont souvent localisés dans la partie moyenne et méridionale de la Vallée du Miño, bien que s’élaborent aussi vins de qualité dans les rivages atlantiques du sud-ouest et au val du Támega dans l’extrême sud-est. Le climat général est du type maritime tempéré avec d’influences océaniques que petit a petit sont remplacées pour des influences méditerranéennes et continentales, vers le sud et l’est de la région.
Le but de ce travail est évaluer les limites des DO galiciennes, en tenant conte l’évolution des techniques et indices de zonage climatique.
En préliminaire, les conditions climatiques ont été précisées d’un point de vue statistique (stations météo au sein des aires viticoles et stations limitrophes). Puis, plusieurs indices bioclimatiques proposées par la littérature vitivinicole ont été calcules. Le calcul a été opéré aussi sur les données apportées au cours des dernières 5 années pour le nouveau réseau de stations automatiques du Gouvernement régional.
L’élaboration et l’interprétation des résultats de l’analyse statistique ont permit de définir quatre zones agroclimatiques bien différentes au point de vue climatique. Ces résultats démontrent aussi que dans la DO Rías Baixas, il y a au moins deux zones avec conditions climatiques assez différentes. En outre, les données apportées par les nouvelles stations automatiques, on permit d’identifier quelques zones climatiques similaires -à l’échelle de mesoclimat- à l’intérieur des DO traditionnelles.

Galicia is a region in Northwest Spain and has a long viticulture heritage. Today about 28,500 hectares are dedicated to vine growing and, of these, 8.100 has are protected under 5 distinct denominations of origin. Most of these zones are situated in the southern and central part of the region in and around the river Miño valley. Some high quality wines are also produced on the southwest coast and in the river Támega valley. The climate of this area is mild, fresh maritime with strong influences from the Atlantic which gradually give way to Mediterranean and continental inland tendencies as one goes inland to the East.
The main aim of this article is to demonstrate the suitability of the classification of today’s Galician AOCs given the latest information on the field of Climatic Zoning.
For this purpose, standardized climate data provided by the Spanish and the Galician meteorological services have been utilized as well as data provided over the last five years by a new network of automatic weather posts that complete the previous network.
These data were used to calculate as series of climatic indices according to various methodologies. This information was later processed statistically to identify the most relevant factors in the differentiation of the vine growing areas.
Results confirmed the existence of four very clearly defined different viticulture climates. It was also shown that within the vine-growing zone of the Rías Baixas at least two sectors exist with quite distinct climatic conditions. Furthermore, the statistic processing of the information provided by the new automatic weather stations advanced research in climatic zoning permitting the identification of a series of typical mesoclimates that appear within the interior of the traditional viticulture zones.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

D. Blanco, C., Alvarez, M.P., García, and J.M., Queijeiro

Vigo University, Plant Biology and Soil Science Department, Ourense Science Faculty, As Lagoas s/n 32004 Ourense, Spain

Contact the author

Keywords

Viticultural climatic characterization, viticultural zoning, mesoclimates, climatic indices

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Soil chemistry as a measure of the distinctiveness of american viticultural areas of the Columbia basin, USA

The Columbia Basin, a semi-arid region centered in the eastern part of Washington State, is the second largest wine grape growing region in the United States and presently contains 10 American Viticultural Areas

Determination of quality related polyphenols in chilean wines by absorbance-transmission and fluorescence excitation emission matrix (a-teem) analyses

Phenolic composition is essential to wine quality (Cleary et al., 2015; Bindon et al., 2020; Niimi et al., 2020) and its assessment is a strong industrial need to quality management.

The effect of organic, biodynamic and conventional production processes on the intrinsic and perceived quality of a typical wine

AIM: The aim of this study was to evaluate the impact of the organic, biodynamic and conventional production processes on the typicality of the Chianti DOCG wine and the relation with the environmental impact in terms of CO2 production

Multi-omics methods to unravel microbial diversity in fermentation of Riesling wines

Wine aroma is shaped by the wine’s chemical compositions, in which both grape constituents and microbes play crucial roles. Although wine quality is influenced by the microbial communities, less is known about their population interactions.

Updating the Winkler index: An analysis of Cabernet sauvignon in Napa Valley’s varied and changing climate

This study aims to create an updated, agile viticultural climate index (similar to the Winkler Index) by performing in-depth analyses of current and historical data from industry partners in several major winegrowing regions. The Winkler Index was developed in the early twentieth century based on analysis of various grape-growing regions in California. The index uses heat accumulation (i.e. Growing Degree Days) throughout the growing season to determine which grape varieties are best suited to each region. As viticultural regions are increasingly subject to the complexity and uncertainty of a changing climate, a more rigorous, agile model is needed to aid grape growers in determining which cultivars to plant where. For the first phase of this study, 21 industry partners throughout Napa Valley shared historical phenology, harvest, viticultural practice, and weather data related to their Cabernet sauvignon vineyard blocks. To complement this data, berry samples were collected throughout the 2021 growing season from 50 vineyard blocks located throughout 16 American Viticultural Areas that were then analyzed for basic berry chemistry and phenolics. These blocks have been mapped using a Geographic Information System (GIS), enabling analysis of altitude, vineyard row orientation, slope, and remotely sensed climate data. Sampling sites were also chosen based on their proximity to a weather station. By analyzing historical data from industry partners and data specifically collected for this study, it is possible to identify key parameters for further analysis. Initial results indicate extreme variability at a high spatial resolution not currently accounted for in modern viticultural climate indices and suggest that viticultural practices play a major role. Using the structure of data collection and analyses developed for the first phase, this project will soon be expanded to other wine regions globally, while continuing data collection in Napa Valley.