Terroir 2004 banner
IVES 9 IVES Conference Series 9 Climate and mesoclimate zonification in the Miño valley (Galicia, NW Spain)

Climate and mesoclimate zonification in the Miño valley (Galicia, NW Spain)

Abstract

[English version below]

Galicia est une région située dans le Nord-Ouest de l’Espagne avec une longe tradition de culture de la vigne. A jour d’oui la vigne occupe en Galicia presque 28.500 ha, desquelles 8.100 correspondent aux 5 zones ayant droit à l’appellation DO (« Denominación de Origen ») équivalent aux AOC françaises. Les vignobles sont souvent localisés dans la partie moyenne et méridionale de la Vallée du Miño, bien que s’élaborent aussi vins de qualité dans les rivages atlantiques du sud-ouest et au val du Támega dans l’extrême sud-est. Le climat général est du type maritime tempéré avec d’influences océaniques que petit a petit sont remplacées pour des influences méditerranéennes et continentales, vers le sud et l’est de la région.
Le but de ce travail est évaluer les limites des DO galiciennes, en tenant conte l’évolution des techniques et indices de zonage climatique.
En préliminaire, les conditions climatiques ont été précisées d’un point de vue statistique (stations météo au sein des aires viticoles et stations limitrophes). Puis, plusieurs indices bioclimatiques proposées par la littérature vitivinicole ont été calcules. Le calcul a été opéré aussi sur les données apportées au cours des dernières 5 années pour le nouveau réseau de stations automatiques du Gouvernement régional.
L’élaboration et l’interprétation des résultats de l’analyse statistique ont permit de définir quatre zones agroclimatiques bien différentes au point de vue climatique. Ces résultats démontrent aussi que dans la DO Rías Baixas, il y a au moins deux zones avec conditions climatiques assez différentes. En outre, les données apportées par les nouvelles stations automatiques, on permit d’identifier quelques zones climatiques similaires -à l’échelle de mesoclimat- à l’intérieur des DO traditionnelles.

Galicia is a region in Northwest Spain and has a long viticulture heritage. Today about 28,500 hectares are dedicated to vine growing and, of these, 8.100 has are protected under 5 distinct denominations of origin. Most of these zones are situated in the southern and central part of the region in and around the river Miño valley. Some high quality wines are also produced on the southwest coast and in the river Támega valley. The climate of this area is mild, fresh maritime with strong influences from the Atlantic which gradually give way to Mediterranean and continental inland tendencies as one goes inland to the East.
The main aim of this article is to demonstrate the suitability of the classification of today’s Galician AOCs given the latest information on the field of Climatic Zoning.
For this purpose, standardized climate data provided by the Spanish and the Galician meteorological services have been utilized as well as data provided over the last five years by a new network of automatic weather posts that complete the previous network.
These data were used to calculate as series of climatic indices according to various methodologies. This information was later processed statistically to identify the most relevant factors in the differentiation of the vine growing areas.
Results confirmed the existence of four very clearly defined different viticulture climates. It was also shown that within the vine-growing zone of the Rías Baixas at least two sectors exist with quite distinct climatic conditions. Furthermore, the statistic processing of the information provided by the new automatic weather stations advanced research in climatic zoning permitting the identification of a series of typical mesoclimates that appear within the interior of the traditional viticulture zones.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

D. Blanco, C., Alvarez, M.P., García, and J.M., Queijeiro

Vigo University, Plant Biology and Soil Science Department, Ourense Science Faculty, As Lagoas s/n 32004 Ourense, Spain

Contact the author

Keywords

Viticultural climatic characterization, viticultural zoning, mesoclimates, climatic indices

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Identification of several glycosidic aroma precursors in six varieties of winemaking grapes and assessment of their aroma potential by acid hydrolysis

In winemaking grapes, it is known that most aroma compounds are present as non-volatile precursors, such as glycosidic precursors. In fact, there is strong evidence supporting the connection between the content of aroma precursors and the aromatic quality of wine [1]. Acid hydrolysis is preferred to reveal the aroma potential of winemaking grapes, as it predicts more accurately the chemical rearrangements occurring during fermentation in acidic environments [2]. In this study, a method involving a fast fermentation followed by acid hydrolysis at 75ºC was used to evaluate the accumulation of aroma compounds over time in fractions obtained from six different varieties of winemaking grapes.

Terroir et variabilité microclimatique : pour une approche à l’échelle de la parcelle

The climatic component is one of the elements of the zoning of viticultural potential, alongside the geological and pedological components (Morlat, 1989; Lebon et al , 1993). Many climatic indices have thus been defined to estimate the potential for wine production at the scale of a region or a country (Carbonneau et al ., 1992). The main climatic variables used are temperature and radiation. We note in particular the indices of Branas, Huglin and Ribereau-Gayon (Huglin, 1986). However, few studies have been undertaken on the spatial variability of microclimatic conditions at the scale of a vineyard, a valley, or even a municipality.

Legacy of land-cover changes on soil erosion and microbiology in Burgundian vineyards

Soils in vineyards are recognized as complex agrosystems whose characteristics reflect complex interactions between natural factors (lithology, climate, slope, biodiversity) and human activities. To date, most of the unknown lies in an incomplete understanding of soil ecosystems, and specifically in the microbial biodiversity even though soil microbiota is involved in many key functions, such as nutrient cycling and carbon sequestration. Soil biological properties are indicative of soil quality. Therefore, understanding how soil communities are related to soil ecosystem functioning is becoming an essential issue for soil strategy conservation. Here, we propose to assess the importance of land-cover history on the present-day microbiological and physico-chemical properties. The studied area was selected in the Burgundian vineyards (Pernand-Vergelesses, Burgundy, France) where land occupation has been reconstructed over the last 40 years. Soil samples were collected in five areas reflecting various land cover history (forest, vineyards, shifting from forest to vineyards). For each area, physico-chemical parameters (pH, C, N, P, grain size) were measured and DNA was extracted to characterize the abundance and diversity of microbial communities. The obtained results show significant differences in the five areas suggesting that present-day microbial molecular biomass and bacterial taxonomic is partly inherited from past land occupation. Over longer period of time, such study of land-uses legacies may help to better assess ecosystem recovery and the impact of management practices for a better soil quality and vineyards sustainability.

Investigating the Ancient Egyptian wines: The wine jars database

In Ancient Egypt, wine was a luxury product consumed mainly by the upper classes and the royal family and offered to gods in daily religious rituals in the temples.
Since the Predynastic (4000-3100 BC) period, wine jars were placed in tombs as funerary offerings. From the Old Kingdom (2680-2160 BC) to the Greco-Roman (332 BC-395 AD) period, viticulture and winemaking scenes were depicted on the private tombs’ walls. During the New Kingdom (1539-1075 BC), wine jars were inscribed to indicate: vintage year, product, quality, provenance, property and winemaker’s name and title.

Coping with extreme climatic events: some lessons from recent work on grapevine under heat peak

Climate change critically challenges viticulture. Among other threats, extreme and increasingly frequent heatwaves cause irreversible burns on leaves and bunches. A series of observations and experiments was conducted to better understand how leaf burns originate and whether genetics or management practices can mitigate them. In 2019, a panel of 279 potted cultivars of Vitis vinifera L. grown outdoors suffered a heat peak and a genetic origin of leaf burn variability was demonstrated. To deeper explore this variability, fourteen cultivars were selected for their contrasting responses to high temperatures, and detached leaves were submitted to a controlled increase in temperature up to 50 °C in a growth chamber.