Terroir 2004 banner
IVES 9 IVES Conference Series 9 Study and valorization of vineyards “terroirs” of A.O.C. Cahors (Lot, France)

Study and valorization of vineyards “terroirs” of A.O.C. Cahors (Lot, France)

Abstract

In the current context of market competition and consumption evolution, it is necessary to produce wines of a genuine typicity. The Terroir represents an unique and irreproducible inheritance that can be valorized through the origin and the sensory characteristics of the wines.
Since 1989, the Expérimental Association of « la Ferme Départementale d’Anglars-Juillac » has led research and experimentation on vineyard terroirs, aimed at direct valorization for the winegrowers. The objective is to know (1) the wine-producing potentials of each terroir of the Cahors Appellation, for the principal vine grape cultivars of the Appellation: Malbec N or Cot N or Auxerrois N, (2) the vine behaviour on these terroirs and (3) to valorize this knowledge through technology, agronomy and enological procedures adapted to each terroir.
Cartography of the whole A.O.C. Cahors has been realized (22000ha). Nine terroirs have been identified according to the type of soil and the landscape situation: alluvial terraces of the Lot, “grèzes”, calcareous hillsides, high calcareous plateaus (eventually with marl), and red clays from sidérolithique formations. Agronomic and enological studies of a representative parcel of each terroir have been done since 1994. Pedological pits have also been done with physical and chemical analyses of each described horizon. Each year, maturity controls are carried out on these parcels; each is separately vinified with the same protocol. Wines are analyzed and tasted.
Results show that qualitative terroirs exist on alluvial terraces of the Lot, as well as on high calcareous plateaus. It is not the chemical nature (acid or calcareous) of the soil but the thickness of the soil which determines the quality of a terroir, in relation with the regularity of vine hydrous nutrition. For all that, some terroirs seem well adapted to produce vintage wines, whereas other terroirs seem more adapted to produce regional wines or wines for blending.
This study provides an agronomic and enological basis for advising wine-growers, in order to lead each terroir to its qualitative optimum: adaptation of the cultural practices, especially for new plantations (choice of the rootstock, soil management); adaptation of the method of vinification according to the terroir. The wine-grower has to take care of the terroir, the quality of the grape harvested and the wine. This study has led to a qualitative improvement of A.O.C. Cahors wines. The Cahors Appellation is now experiencing an infatuation for the most qualitative terroirs.
In the future, the start-up of the hierarchical system of the A.O.C. Cahors terroirs and the creation of vintage wines, will allow a large communication on wine quality and typicity, favorable to the whole Appellation Cahors wine business.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Francis Laffargue (1), Elisabeth Besnard (1) and Marc Garcia (2)

1) Association d’Expérimentation, Ferme Départementale, 46140 Anglars-Juillac, France
2) ENSAT, Centre de Viticulture-Œnologie de Midi-Pyrénées, Avenue de l’Agrobiopole, Auzeville-Tolosane, BP 107 F, 31320 Castanet-Tolosane Cedex, France

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Mobile device to induce heat-stress on grapevine berries

Studying heat stress response of grapevine berries in the field often relies on weather conditions during the growing season. We constructed a mobile heating device, able to induce controlled heat stress on grapes in vineyards. The heater consisted of six 150 W infrared lamps mounted in a profile frame. Heating power of the lamps could be controlled individually by a control unit consisting of a single board computer and six temperature sensors to reach a pre-set temperature. The heat energy applied to individual berries within a cluster decreases by the squared distance to the heat source, enabling the establishment of temperature profiles within individual clusters. These profiles can be measured by infrared thermography once a steady state has been reached. Radiant flux density received by a berry depending on the distance was calculated based on a view factor and measured lamp surface temperature and resulted to 665 Wm-2 at 7cm. Infrared thermography of the fruit surface was in good agreement with measurements conducted with a thermocouple inserted at epidermis level. In combination with infrared thermography, the presented device offers possibilities for a wide range of applications like phenotyping for heat tolerance in the field to proceed in the understanding of the complex response of plants to heat stress. Sunburn necrosis symptoms were artificially induced with the aid of the device for cv. Bacchus and cv. Sylvaner in the 2020 and 2021 growing season. Threshold temperatures for sunburn induction (LT5030min) were derived from temperature data of single berries and visual sunburn assessment, applying logistic regression. A comparison of threshold temperatures for the occurrence of sunburn necrosis confirmed the higher susceptibility of cv. Bacchus. The lower susceptibility of cv. Sylvaner did not seem to be related to its phenolic composition, rendering a thermoprotective role of berry phenolic compounds unlikely.

Impact of glutathione and elemental sulphur juice addition on the volatile thiol production in South African Sauvignon blanc wine

Three compounds, 3-mercaptohexanol (3MH), 3-mercaptohexyl-acetate (3MHA) and 4-mercapto-4-methylpentan-2-one (4MMP), also known as varietal thiols, have been identified to contribute positively to wine aroma and are responsible for the distinct gooseberry, grapefruit, guava and box tree character found in Sauvignon blanc wines. Certain volatile thiol compounds though, can cause off-aromas of onion, garlic, rubber and rotten egg, this group of molecules is known as reductive sulphur compounds (RSC). This study looks into how the addition of sulphur-compounds to Sauvignon blanc juice contributes to the varietal thiol (3MH and 3MHA) concentration and reductive sulphur compound concentration in South African Sauvignon blanc wine.

Strategies for sample preparation and data handling in GC-MS wine applications

It is often said that wine is a complex matrix and the chemical analysis of wine with the thousands of compounds detected and often measured is proof. New technologies can assist not only in separating and identifying wine compounds, but also in providing information about the sample as a whole. Information-rich techniques can offer a fingerprint of a sample (untargeted analysis), a comprehensive view of its chemical composition. Applying statistical analysis directly to the raw data can significantly reduce the number of compounds to be identified to the ones relevant to a particular scientific question. More data can equal more information, but also more noise for the subsequent statistical handling.

Descriptive analysis of Sangiovese and Cabernet-Sauvignon wines from different terroirs in D.O.C. Bolgheri (Tuscany)

Different terroirs have been identified in Bolgheri area (a viticultural appellation in the Tirrenian coast of Tuscany) by the aid of pedological, landscape and agronomic observations in 1993. Numerous preliminary observations suggested that wines obtained from these different terroirs were unique.

The impact of sustainable management regimes on amino acid profiles in grape juice, grape skin flavonoids, and hydroxycinnamic acids

One of the biggest challenges of agriculture today is maintaining food safety and food quality while providing ecosystem services such as biodiversity conservation, pest and disease control, ensuring water quality and supply, and climate regulation. Organic farming was shown to promote biodiversity and carbon sequestration, and is therefore seen as one possibility of environmentally friendly production. Consumers expect organically grown crops to be free from chemical pesticides and mineral fertilizers and often presume that the quality of organically grown crops is different or higher compared to conventionally grown crops. Integrated, organic, and biodynamic viticulture were compared in a replicated field trial in Geisenheim, Germany (Vitis vinifera L. cv. Riesling). Amino acid profiles in juice, grape skin flavonoids, and hydroxycinnamic acids were monitored over three consecutive seasons beginning 7 years after conversion to organic and biodynamic viticulture, respectively. In addition, parameters such as soil nutrient status, yield, vigor, canopy temperature, and water stress were monitored to draw conclusions on reasons for the observed changes. Results revealed that the different sustainable management regimes highly differed in their amino acid profiles in juice and also in their skin flavonol content, whereas differences in the flavanol and hydroxycinnamic acid content were less pronounced. It is very likely that differences in nutrient status and yield determined amino acid profiles in juice, although all three systems showed similar amounts of mineralized nitrogen in the soil. Canopy structure and temperature in the bunch zone did not differ among treatments and therefore cannot account for the observed differences in favonols. A different light exposure of the bunches in the respective systems due to differences in vigor together with differences in berry size and a different water status of the vines might rather be responsible for the increase in flavonol content under organic and biodynamic viticulture.