Terroir 2004 banner
IVES 9 IVES Conference Series 9 Study and valorization of vineyards “terroirs” of A.O.C. Cahors (Lot, France)

Study and valorization of vineyards “terroirs” of A.O.C. Cahors (Lot, France)

Abstract

In the current context of market competition and consumption evolution, it is necessary to produce wines of a genuine typicity. The Terroir represents an unique and irreproducible inheritance that can be valorized through the origin and the sensory characteristics of the wines.
Since 1989, the Expérimental Association of « la Ferme Départementale d’Anglars-Juillac » has led research and experimentation on vineyard terroirs, aimed at direct valorization for the winegrowers. The objective is to know (1) the wine-producing potentials of each terroir of the Cahors Appellation, for the principal vine grape cultivars of the Appellation: Malbec N or Cot N or Auxerrois N, (2) the vine behaviour on these terroirs and (3) to valorize this knowledge through technology, agronomy and enological procedures adapted to each terroir.
Cartography of the whole A.O.C. Cahors has been realized (22000ha). Nine terroirs have been identified according to the type of soil and the landscape situation: alluvial terraces of the Lot, “grèzes”, calcareous hillsides, high calcareous plateaus (eventually with marl), and red clays from sidérolithique formations. Agronomic and enological studies of a representative parcel of each terroir have been done since 1994. Pedological pits have also been done with physical and chemical analyses of each described horizon. Each year, maturity controls are carried out on these parcels; each is separately vinified with the same protocol. Wines are analyzed and tasted.
Results show that qualitative terroirs exist on alluvial terraces of the Lot, as well as on high calcareous plateaus. It is not the chemical nature (acid or calcareous) of the soil but the thickness of the soil which determines the quality of a terroir, in relation with the regularity of vine hydrous nutrition. For all that, some terroirs seem well adapted to produce vintage wines, whereas other terroirs seem more adapted to produce regional wines or wines for blending.
This study provides an agronomic and enological basis for advising wine-growers, in order to lead each terroir to its qualitative optimum: adaptation of the cultural practices, especially for new plantations (choice of the rootstock, soil management); adaptation of the method of vinification according to the terroir. The wine-grower has to take care of the terroir, the quality of the grape harvested and the wine. This study has led to a qualitative improvement of A.O.C. Cahors wines. The Cahors Appellation is now experiencing an infatuation for the most qualitative terroirs.
In the future, the start-up of the hierarchical system of the A.O.C. Cahors terroirs and the creation of vintage wines, will allow a large communication on wine quality and typicity, favorable to the whole Appellation Cahors wine business.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Francis Laffargue (1), Elisabeth Besnard (1) and Marc Garcia (2)

1) Association d’Expérimentation, Ferme Départementale, 46140 Anglars-Juillac, France
2) ENSAT, Centre de Viticulture-Œnologie de Midi-Pyrénées, Avenue de l’Agrobiopole, Auzeville-Tolosane, BP 107 F, 31320 Castanet-Tolosane Cedex, France

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Can grapevine tolerance to bunch rot be directly induced by groundcover management?

Botrytis bunch rot occurrence is the most important limitation for the wine industry in humid environments. The effect of grapevine vegetative growth on bunch rot expression results from direct effects (cluster architecture, nitrogen status among others) and indirect ones (via microclimate). Previous studies of our group showed strong differences in bunch rot incidence between floor management treatments: cover crop (CC) vs weed-free strips under the trellis with herbicide (H). We observed that in some circumstances this reduction in bunch rot incidence occurred without major vine growth differences among treatments. The aim of the present study was to test the general hypothesis that other factors unrelated to grapevine vegetative expression could be more relevant to grapevine susceptibility to bunch rot.

The effects of reducing herbicides in New Zealand vineyards

Herbicides are commonly sprayed in the vine row to prevent competition with vines for water and minerals and to keep weeds from growing into the bunch zone. Sprays are applied before budbreak and reapplied multiple times during the season to keep the undervine bare. There is growing concern about the negative effects of herbicides on humans and the environment, and weeds in New Zealand have developed resistance to herbicides. Therefore, it is imperative that we reduce our reliance on herbicides in viticulture and incorporate methods that do not engender resistance.

Red wine oxidation study by accelerating ageing tests and electrochemical method

Red wines can undergo many undesirable changes during the winemaking process and storage, particularly oxidative degradation due to numerous atmospheric oxygen intakes. This spoilage can impact organoleptic properties and color stabilization but this impact depends on the wine composition. Phenolic compounds constitute primary targets to oxidation reactions

Impact on leaf morphology of Vitis vinifera L. cvs Riesling and Cabernet Sauvignon under Free Air Carbon dioxide Enrichment (FACE)

Atmospheric carbon dioxide (CO2) concentration has continuously increased since pre-industrial times from 280 ppm in 1750, and is predicted to exceed 700 ppm by the end of 21st century. For most of C3 plant species elevated CO2 (eCO2) improve photosynthetic apparatus results in an increased plant biomass production. To investigate the effects of eCO2 on morphological leaf characteristics the two Vitis vinifera L. cultivars, Riesling and Cabernet Sauvignon, grown in the Geisenheim VineyardFACE (Free Air Carbon dioxide Enrichment) system were used. The FACE site is located at Geisenheim University (49° 59′ N, 7° 57′ E, 94 m above sea level), Germany and was implemented in 2014 comparing future atmospheric CO2-concentrations (eCO2, predicted for the mid-21st century) with current ambient CO2-conditions (aCO2). Experiments were conducted under rain-fed conditions for two consecutive years (2015 and 2016). Six leaves per repetition of the CO2 treatment were sampled in the field and immediately fixed in a FAA solution (ethanol, H2O, formaldehyde and glacial acetic acid). After 24 h leaf samples were transferred and stored in an ethanol solution. Subsequently, leaf tissue was dehydrated using ethanol series and embedded in paraffin. By using a rotary microtomesections of 5 µm were prepared and fixed on microscopic slides. Subsequent the samples were stained using consecutive staining and washing solutions. Afterwards pictures of the leaf cross-sections were taken using a light microscope and consecutive measurements were conducted with an open source image software. Differences found in leaf cross-sections of the two CO2 treatments were detected for the palisade parenchyma. Leaf thickness, upper and lower epidermis and spongy parenchyma remained less affected under eCO2 conditions. The observed results within grapevine leaf tissues can provide first insights to seasonal adaptation strategies of grapevines under future elevated CO2 concentrations.

PHENOLICS DYNAMICS OF BERRIES FROM VITIS VINIFERA CV SYRAH GRAFTED ON TWO CONTRASTING ROOTSTOCKS UNDER COMBINED SALINITY AND WATER STRESSORS AND ITS EFFECT ON WINE QUALITY

Wine regions are getting warmer as average temperatures continue raising affecting grape growth, berry composition and wine production. Berry quality was evaluated in plants of Vitis vinifera cv Syrah grafted on two rootstocks, Paulsen (PL1103) and SO4, and grown under two salinity concentrations (LS:0.7dS/m and HS:2.5dSm-1) in combination with two irrigation regimes (HW:133% and CW:100%), being the seasonal water application 483mm (control, 100%). Spectrophotometer measurements from berry skin during veraison and harvest stages and from “young” wine samples, were indicative of the stressors effect and the mediation of the rootstocks. At veraison (i) total phenolics content were high under LSHW (0.7dSm-1 and high water conditions) for SO4 and PL1103.