Terroir 2004 banner
IVES 9 IVES Conference Series 9 Study and valorization of vineyards “terroirs” of A.O.C. Cahors (Lot, France)

Study and valorization of vineyards “terroirs” of A.O.C. Cahors (Lot, France)

Abstract

In the current context of market competition and consumption evolution, it is necessary to produce wines of a genuine typicity. The Terroir represents an unique and irreproducible inheritance that can be valorized through the origin and the sensory characteristics of the wines.
Since 1989, the Expérimental Association of « la Ferme Départementale d’Anglars-Juillac » has led research and experimentation on vineyard terroirs, aimed at direct valorization for the winegrowers. The objective is to know (1) the wine-producing potentials of each terroir of the Cahors Appellation, for the principal vine grape cultivars of the Appellation: Malbec N or Cot N or Auxerrois N, (2) the vine behaviour on these terroirs and (3) to valorize this knowledge through technology, agronomy and enological procedures adapted to each terroir.
Cartography of the whole A.O.C. Cahors has been realized (22000ha). Nine terroirs have been identified according to the type of soil and the landscape situation: alluvial terraces of the Lot, “grèzes”, calcareous hillsides, high calcareous plateaus (eventually with marl), and red clays from sidérolithique formations. Agronomic and enological studies of a representative parcel of each terroir have been done since 1994. Pedological pits have also been done with physical and chemical analyses of each described horizon. Each year, maturity controls are carried out on these parcels; each is separately vinified with the same protocol. Wines are analyzed and tasted.
Results show that qualitative terroirs exist on alluvial terraces of the Lot, as well as on high calcareous plateaus. It is not the chemical nature (acid or calcareous) of the soil but the thickness of the soil which determines the quality of a terroir, in relation with the regularity of vine hydrous nutrition. For all that, some terroirs seem well adapted to produce vintage wines, whereas other terroirs seem more adapted to produce regional wines or wines for blending.
This study provides an agronomic and enological basis for advising wine-growers, in order to lead each terroir to its qualitative optimum: adaptation of the cultural practices, especially for new plantations (choice of the rootstock, soil management); adaptation of the method of vinification according to the terroir. The wine-grower has to take care of the terroir, the quality of the grape harvested and the wine. This study has led to a qualitative improvement of A.O.C. Cahors wines. The Cahors Appellation is now experiencing an infatuation for the most qualitative terroirs.
In the future, the start-up of the hierarchical system of the A.O.C. Cahors terroirs and the creation of vintage wines, will allow a large communication on wine quality and typicity, favorable to the whole Appellation Cahors wine business.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Francis Laffargue (1), Elisabeth Besnard (1) and Marc Garcia (2)

1) Association d’Expérimentation, Ferme Départementale, 46140 Anglars-Juillac, France
2) ENSAT, Centre de Viticulture-Œnologie de Midi-Pyrénées, Avenue de l’Agrobiopole, Auzeville-Tolosane, BP 107 F, 31320 Castanet-Tolosane Cedex, France

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Bioprotection en phase pré-fermentaire, synthèse de 3 ans d’expérimentations dans différentes régions viticoles

With growing consumer interest in products without chemical additives, limiting the use of sulfites is a priority for the wine industry. Bioprotection is a biological alternative that avoids or reduces the risks of alterations that have a negative impact on the organoleptic quality of wines and, ultimately, on their acceptability to consumers. bioprotection can also provide a response to the risks of microbiological deviations, which are increased both by climate change and by the organization of harvesting operations, which increasingly include the use of multi-bins filled at the vine, exposing the harvest to sometimes high temperatures for longer periods of time.

Biotic and abiotic factors affecting physiological aspects underlying vegetative vigour in two commercial grapevine varieties

Grapevine vigour, defined as the propensity to assimilate, store and/or use non-structural sugars for allowing fast growth of shoots and producing large canopies[1], is crucial to optimize vineyard management. Recently, a model has been proposed for predicting the vigor of young grapevines through the measurement of the vegetative growth and physiological parameters, such as water status and gas exchange[2]. Our objectives were (1) to explore the influence of the association of two grapevine varieties (Tempranillo and Cabernet Sauvignon, grafted onto R110 rootstocks) with arbuscular mycorrhizal fungi (AMF) on the vegetative vigour of young plants; and (2) to assess the effect of environmental factors linked to climate change on the vegetative vigour of Cabernet Sauvignon.

Alimentary film to reduce cork taint and improve wine organoleptic quality

Wine quality may be compromised by mouldy off‒flavours related to cork taint. Although different compounds are considered to be involved in this wine defect, haloanisoles (HAs), and among them the 2,4,6-trichloroanisole (TCA), are claimed as the main responsible.

Trace-level analysis of phosphonate in wine and must by ion chromatography with inductively coupled plasma mass spectrometry (IC-ICP-MS).

Phosphonic acid and especially potassium dihydrogen phosphonate are widely used to restrain the ubiquitous pressure of grapevine downy mildew in viticulture. Nevertheless, phosphonic acid and its derivatives have been banned in organic viticulture in October 2013, because they have been classified as plant protection products since then.

Rare earth elements in grapes and soil: study of different soil extraction methods

Lanthanides, together with scandium and yttrium, make up the group of Rare Earth Elements (REEs). An official method for analysis of the bioavailable REEs accumulated by plants, depending mainly on soil characteristics, chemical speciation in soil and the specific ability of the plant, is still lacking.