Terroir 2004 banner
IVES 9 IVES Conference Series 9 Climatic zoning of the Ibero-American viticultural regions

Climatic zoning of the Ibero-American viticultural regions

Abstract

The Ibero-American Network of Viticulture, a component of the program of agricultural technology of the CYTED (Ibero-American Program of Science and Technology for Development), is developing the project “Zoning Methodology and Application in Viticultural Regions of Ibero-America”. An objective of the project is the climatic characterization of this large viticultural region with the participation of ten countries: Argentine, Bolivia, Brazil, Chile, Cuba, Spain, Mexico, Peru, Portugal, and Uruguay. The first step in the research is based on Systematic Multi-criteria Climatic Classification (CCM) for Geo-viticultral regions. The project has assembled a climatic database that characterises the viticultural regions that includes variables relevant to viticulture: air temperature (average, maximum, and mininmum), precipitation, relative humidity, solar radiation, number of sunshine hours, wind speed, and evapotranspiration. The application of the climatic indices IH, IF, and IS of the CCM System, highlights the variability of the thermal and hydrological components of the viticultural climate. The analysis of the climatic database, show the large climatic variability of the region. The initial results have identified seventeen viticultural climates in the twenty-six viticultural regions in the nine countries of the project. The identified viticultural climates represent forty-four percent of the climatic groups identified at the global level. This large regional climatic variability explains, to a large extent, the large diversity in the products of the Ibero-America region, including the organolepctic characteristics and the uniqueness of the vines produced. The research has also highlighted viticultural areas characterised by large inter-annual climatic variability. In such areas, the viticultural climatic classification changes as a function of the time of the year where grape-wine can be produced. The undergoing climate zoning is going to be used is a second phase of the project as a component of an integrated study that includes regional edaphic factors, and indicators of ecophysiological responses of the vineyards to natural factors.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

V. Sotés (1) et J. Tonietto (2)

(1) universidad Politécnica De Madrid, Etsi Agrónomos – Ciudad Universitaria S/N – E28040 – Madrid, Spain
(2) embrapa – National Research Center For Viticulture And Wine – Cnpuv, Rua Livramento, 515 ; 95700-000 – Bento Gonçalves, Brazil

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Tackling the 3D root system architecture of grapevines: a new phenotyping pipeline based on photogrammetry

Plant roots fulfil important functions as they are responsible for the acquisition of water and nutrients, for anchorage and stability, for interaction with symbionts and, in some cases, for the storage of carbohydrates. These functions are associated with the Root System Architecture (RSA, i.e. the form and the spatial arrangement of the roots in the soil). The RSA results from several biological processes (elongation, ramification, mortality…) genetically determined but with high structural plasticity.

Phenotypical impact of a floral somatic mutation in the cultivar Listán Prieto

The accession Criolla Chica Nº2 (CCN2) is catalogued as a floral mutation of cultivar Criolla Chica (synonym for cv. Listán Prieto). Contrary to what is observed in hermaphrodite-cultivated varieties like Criolla Chica, CCN2 exhibits a prevalence of masculinized flowers. Aiming to study the incidence and phenotypical implications of this mutation, CCN2 plants were deeply studied using Criolla Chica ‘Ballista’ (CCBA) as control plants. For each CCN2 plant, two inflorescences per shoot were sampled and segmented into proximal, mid and distal positions, relative to the pedicel. Flowers were observed through magnifying lens and classified according to OIV151 descriptor.

Implications of the nature of organic mulches used in vineyards on grapevine water status, yield, berry quality and biological soil health  

Climate emergency is going to affect the agricultural suistainability, wine grapes being probably one of the crops more sensitive to environmental constraints. In this context, mitigation strategies such as the revalorization of agricultural wastes are paramount to cope with the current challenges. The use of organic mulches has been reported to reduce soil water evaporation and improve vine water status, reduce soil erosion, and increase soil organic matter with little impact on berry quality. However, less is known about their effects on the microbiote of vineyards.

Optimised extraction and preliminary characterisation of mannoproteins from non-Saccharomyces wine yeasts

The use of non-Saccharomyces yeast species for the improvement of wine technological and oenological properties is a topic that has gained much interest in recent years [1]. Their application as co-starter cultures sequential to the inoculation of Saccharomyces cerevisiae and in aging on the lees has been shown to improve aspects such as protein stability and mouthfeel [2].

New tools for a visual analysis of vineyard landscapes?

A vineyard landscape is above all an area observed by someone, that is to say a physical entity perceved and represented by this person.