Terroir 2004 banner
IVES 9 IVES Conference Series 9 Climatic zoning of the Ibero-American viticultural regions

Climatic zoning of the Ibero-American viticultural regions

Abstract

The Ibero-American Network of Viticulture, a component of the program of agricultural technology of the CYTED (Ibero-American Program of Science and Technology for Development), is developing the project “Zoning Methodology and Application in Viticultural Regions of Ibero-America”. An objective of the project is the climatic characterization of this large viticultural region with the participation of ten countries: Argentine, Bolivia, Brazil, Chile, Cuba, Spain, Mexico, Peru, Portugal, and Uruguay. The first step in the research is based on Systematic Multi-criteria Climatic Classification (CCM) for Geo-viticultral regions. The project has assembled a climatic database that characterises the viticultural regions that includes variables relevant to viticulture: air temperature (average, maximum, and mininmum), precipitation, relative humidity, solar radiation, number of sunshine hours, wind speed, and evapotranspiration. The application of the climatic indices IH, IF, and IS of the CCM System, highlights the variability of the thermal and hydrological components of the viticultural climate. The analysis of the climatic database, show the large climatic variability of the region. The initial results have identified seventeen viticultural climates in the twenty-six viticultural regions in the nine countries of the project. The identified viticultural climates represent forty-four percent of the climatic groups identified at the global level. This large regional climatic variability explains, to a large extent, the large diversity in the products of the Ibero-America region, including the organolepctic characteristics and the uniqueness of the vines produced. The research has also highlighted viticultural areas characterised by large inter-annual climatic variability. In such areas, the viticultural climatic classification changes as a function of the time of the year where grape-wine can be produced. The undergoing climate zoning is going to be used is a second phase of the project as a component of an integrated study that includes regional edaphic factors, and indicators of ecophysiological responses of the vineyards to natural factors.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

V. Sotés (1) et J. Tonietto (2)

(1) universidad Politécnica De Madrid, Etsi Agrónomos – Ciudad Universitaria S/N – E28040 – Madrid, Spain
(2) embrapa – National Research Center For Viticulture And Wine – Cnpuv, Rua Livramento, 515 ; 95700-000 – Bento Gonçalves, Brazil

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

The use of microwaves during the maceration of Cabernet Sauvignon wines for improving their chromatic characteristics

The use of new technologies such as microwaves (MW) arose in recent years as an efficient alternative to reduce the use of sulfur dioxide (SO2) and as a method for improving wines in terms of color and aroma [1, 2]. MW (non-ionizing electromagnetic waves with frequencies between 300 MHz and 300 GHz) have been widely applied in the food industry in order to reduce processing time and favor food preservation.

Influence of processing parameters on aroma profile of conventional and ecological Cabernet-Sauvignon red wine during concentration by reverse osmosis

Wine aroma represents one of the most important quality parameter and it is influenced by various factors (viticulture and vinification techniques, climate or storage conditions etc.). Wines produced from conventionally and ecologically grown grapes of same variety have different chemical composition and aroma profile [1]. Aroma profile of wine can be also influenced by additional treatment of wine, such as concentration of wine by reverse osmosis (RO). Reverse osmosis represents a pressure-driven membrane separation technique that separates the initial wine on the retentate or concentrate that is retained on the membrane, and permeate that passes through it [2]. Wine permeate usually containes water, ethanol, acetic acid and several low molecular weight compounds that can pass through the membrane. This property enables the use of reverse osmosis membranes for wine concentration, partial dealcoholization, acetic acid or aroma correction [3,4].

Influence du terroir sur la composition en flavonoïdes de la baie de raisin de Cabernet franc en Moyenne Vallée de la Loire

The terroir offers great variability in the typicity of the wines produced. Following tastings integrating several vintages, the multiple factor analysis of the sensory data revealed a group of taste criteria contributing to the notion of “Power”, referenced “Power and Harmony”, which makes it possible to differentiate wines from various terroirs of the Middle Loire Valley (Pages et al ., 1987).

The evolution of the concept of geographical denomination in South America

Vers la fin du XX siècle, la vitiviniculture argentine a subi une profonde transformation qualitative atteignant toute la filière. L’analyse de l’évolution de la superficie des vignobles, l’élaboration des vins, la consommation et les exportations, permet de mettre en évidence ces changements. Dans ce contexte, l’origine apparaît comme un outil de force, d’expansion et de succès sur les marchés.

The impact of grazing by cattle on Vitis vinifera L. cv. Shiraz vegetative growth and metabolite profile

Context and purpose of the study. Globally, vineyard cultivation uses conventional methods to manage pests, diseases and increase yield.