Terroir 2004 banner
IVES 9 IVES Conference Series 9 Methodology to assess vine cultivation suitability using climatic ranges for key physiological processes: results for three South African regions

Methodology to assess vine cultivation suitability using climatic ranges for key physiological processes: results for three South African regions

Abstract

[English version below]

Le climat a de fortes implications sur le bon fonctionnement physiologique de la vigne et a besoin d’être quantifié afin de déterminer l’aptitude des régions à la culture de la vigne. Une méthode, qui pourrait éventuellement servir à prévoir l’aptitude des régions à la culture de la vigne, est proposée. Les seuils climatiques (température, vitesse du vent et humidité relative) pour les processus physiologiques (aussi bien photosynthèse des feuilles qu’accumulation des sucres et potassium et formation d’acide organique et respiration) ont été étudiés dans trois régions viticoles d’Afrique du Sud (Stellenbosch, Roberston et Upington) pendant les périodes de pré-et post-véraison. Sont considérés à la fois les seuils climatiques optimum et extrêmes. Une variation importante dans le nombre d’heures disponibles pour le fonctionnement physiologique optimal (selon les paramètres étudiés) apparait entre les régions. En considérant tous les facteurs, la région de Stellenbosch semblerait être la plus appropiée aux besoins physiologiques étudiés pour la culture de la vigne.

Climate has serious implications on proper physiological functioning of grapevines and needs to be quantified in order to determine the vine cultivation suitability of grape growing regions. Methodology is proposed that may eventually be used to predict the suitability of regions/terroirs for grapevine cultivation. Climatic ranges of temperature, wind speed and relative humidity for key physiological processes (photosynthesis of the leaves as well as sugar and potassium accumulation, organic acid formation and respiration, and colour and flavour development in the grapes) were studied in three wine producing regions of South Africa (Stellenbosch, Robertson and Upington) during the pre- and post-véraison growth periods. Both optimum and extreme climatic ranges were considered. Marked variation in the number of hours available for optimal physiological functioning (according to the parameters studied) occurred between the regions. All factors considered, the Stellenbosch region would seem to be best suited to the studied physiological requirements for grapevine cultivation.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

J.J. Hunter (1) and V. Bonnardot (2)

1) Infruitec/Nietvoorbij-Institute for Fruit, Vine and Wine of the Agricultural Research Council (ARC) Private Bag X5026, 7599 Stellenbosch, South Africa
2) ARC-Institute for Soil, Climate and Water (ISCW), Private Bag X5026, 7599 Stellenbosch, South Africa

Contact the author

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Adaptation to climate change by determining grapevine cultivar differences using temperature-based phenology models

Grapevine phenology is advancing with increased temperatures associated with climate change. This may result in higher fruit sugar concentrations at harvest and/or earlier compressed harvests and changes in the synchrony of sugar with other fruit metabolites. One adaptation strategy that growers may use to maintain typicity of wine style is to change cultivars. This approach may enable fruit

Influence of climatic conditions on grape composition of Tempranillo in La Mancha DO (Spain)

The aim of this work was to analyze the variability in grape composition of the Tempranillo cultivar related to climatic conditions, in La Mancha Designation of Origin. Grape composition (sugar content, total acidity, pH, malic acid, and total and extractable anthocyanins) recorded during ripening, were analysed for the period 2000-2019. The weather conditions at daily time scale, recorded during the same period, were also evaluated. The relationships between grape parameters with climatic variables related to temperature and to water deficits, referring different periods between phenological events along the growing cycle, were evaluated using regression analysis. High variability in grape composition was observed in the period analysed. Total acidity varied between 3.7 and 7.3 gL-1 while malic acid varied between 1.2 and 4 gL-1. The extractable anthocyanins ranged between 526 and 972 mgL-1, and total anthocyanins ranged between 922 and 1388 mgL-1, being the lowest values recorded in the hottest year (2017). Total acidity decreased 0.77 gL-1 for an increase of 100 GDD, while malic acid decrease in 0.42 gL-1 for the same GDD increase, being the period between veraison and harvest the one that seemed to have higher influence on acidity. In addition, it was confirmed that increasing water deficits decreased acidity. Total and extractable anthocyanins increased in about 210 and 105 mgL-1, respectively, with an increase of 100 GDD from veraison to harvest, and the increase in water deficits favour the increase of anthocyanins, both total and extractable anthocyanins. Total and extractable anthocyanins concentration increased in 35 and 22 mgL-1 per an increase of 10 mm in the water deficit. These results can be of interest to understand the potential changes that grapes composition may suffer under future warmer climates.

Conventions and methods towards landscape quality: an application in the Douro (Portugal)

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" text_orientation="center" custom_margin="65px||18px||false|false"...

Effect of two contrasting soils on grape and wine sensory characteristics in Shiraz

Aims: Berry composition and wine sensory characteristics reflect the origin of grape production and seasonal climatic conditions. The aim of this study was to compare berry and wine sensory characteristics from two contrasting soil types where the vineyard climate, geography, topography, vine and management factors were not different.

Combined abiotic-biotic plant stresses on the roots of grapevine

In the 19th century, devastating outbreaks of phylloxera (Daktulosphaira vitifoliae Fitch), almost brought European viticulture to its knees. Phylloxera does not only take energy in form of sugars from the vine, but also affects the up- and down- regulations of genes, acts as a carbon sink and reprograms the physiology of the grapevines, including nutrient uptake and the defense system [1]. A key trait of rootstocks is the ability to perform well under high lime conditions as about 30 % of the land surface has calcareous soil. Iron deficiency not only causes the well-known problems of lime-induced chlorosis and stunted growth, but also affects the entire plant metabolism.