Terroir 2004 banner
IVES 9 IVES Conference Series 9 Methodology to assess vine cultivation suitability using climatic ranges for key physiological processes: results for three South African regions

Methodology to assess vine cultivation suitability using climatic ranges for key physiological processes: results for three South African regions

Abstract

[English version below]

Le climat a de fortes implications sur le bon fonctionnement physiologique de la vigne et a besoin d’être quantifié afin de déterminer l’aptitude des régions à la culture de la vigne. Une méthode, qui pourrait éventuellement servir à prévoir l’aptitude des régions à la culture de la vigne, est proposée. Les seuils climatiques (température, vitesse du vent et humidité relative) pour les processus physiologiques (aussi bien photosynthèse des feuilles qu’accumulation des sucres et potassium et formation d’acide organique et respiration) ont été étudiés dans trois régions viticoles d’Afrique du Sud (Stellenbosch, Roberston et Upington) pendant les périodes de pré-et post-véraison. Sont considérés à la fois les seuils climatiques optimum et extrêmes. Une variation importante dans le nombre d’heures disponibles pour le fonctionnement physiologique optimal (selon les paramètres étudiés) apparait entre les régions. En considérant tous les facteurs, la région de Stellenbosch semblerait être la plus appropiée aux besoins physiologiques étudiés pour la culture de la vigne.

Climate has serious implications on proper physiological functioning of grapevines and needs to be quantified in order to determine the vine cultivation suitability of grape growing regions. Methodology is proposed that may eventually be used to predict the suitability of regions/terroirs for grapevine cultivation. Climatic ranges of temperature, wind speed and relative humidity for key physiological processes (photosynthesis of the leaves as well as sugar and potassium accumulation, organic acid formation and respiration, and colour and flavour development in the grapes) were studied in three wine producing regions of South Africa (Stellenbosch, Robertson and Upington) during the pre- and post-véraison growth periods. Both optimum and extreme climatic ranges were considered. Marked variation in the number of hours available for optimal physiological functioning (according to the parameters studied) occurred between the regions. All factors considered, the Stellenbosch region would seem to be best suited to the studied physiological requirements for grapevine cultivation.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

J.J. Hunter (1) and V. Bonnardot (2)

1) Infruitec/Nietvoorbij-Institute for Fruit, Vine and Wine of the Agricultural Research Council (ARC) Private Bag X5026, 7599 Stellenbosch, South Africa
2) ARC-Institute for Soil, Climate and Water (ISCW), Private Bag X5026, 7599 Stellenbosch, South Africa

Contact the author

Keywords

List of different keywords (keyword1, keyword2, keyword3)

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Territoires et zones viticoles. Aspects climatiques, pédologiques, agronomiques. Caractérisation des terroirs viticoles: une étude systémique

On assiste actuellement à l’émergence d’une demande sociale forte à l’égard de fonctions par ailleurs traditionnelles de l’agriculture, qui concernent la gestion des ressources du milieu, le maintien d’un tissu social rural, la valorisation des territoires ruraux et l’entretien des paysages.

On the losses of dissolved CO2 during champagne aging

A misconception lingers in the minds of some wine consumers that Champagne wines don’t age. It’s largely a myth, certainly as far as the best cuvees are concerned. Actually, during the so-called autolysis period of time (in the closed bottle, after the “prise de mousse”), complex chemical reactions take place when the wine remains in contact with the dead yeast cells, which progressively bring complex and very much sought-after aromas to champagne. Nevertheless, despite their remarkable impermeability to liquid and air, caps or natural cork stoppers used to cork the bottles are not 100% hermetic with regard to gas transfers. Gas species therefore very slowly diffuse through the cap or cork stopper, along their respective inverse partial pressure. After the “prise de mousse”, because the partial pressure of CO2 in the bottleneck reaches up to 6 bars (at 12 °C), gaseous CO2 progressively diffuse from the bottle to the ambient air
(where the partial pressure of gaseous CO2 is only of order of 0,0004 bar).

Estimating bulk stomatal conductance of grapevine canopies

In response to changes in their environment, grapevines regulate transpiration using various physiological mechanisms that alter conductance of water through the soil-plant-atmosphere continuum. Expressed as bulk stomatal conductance at the canopy scale, it varies diurnally in response to changes in vapor pressure deficit and net radiation, and over the season to changes in soil water deficits and hydraulic conductivity of both soil and plant. It is necessary to characterize the response of conductance to these variables to better model how vine transpiration also responds to these variables. Furthermore, to be relevant for vineyard-scale modeling, conductance is best characterized using data collected in a vineyard setting. Applying a crop canopy energy flux model developed by Shuttleworth and Wallace, bulk stomatal conductance was estimated using measurements of individual vine sap flow, temperature and humidity within the vine canopy, and estimates of net radiation absorbed by the vine canopy. These measurements were taken on several vines in a non-irrigated vineyard in Bordeaux France, using equipment that did not interfere with ongoing vineyard operations. An inverted Penman-Monteith equation was then used to calculate bulk stomatal conductance on 15-minute intervals from July to mid-September 2020. Time-series plots show significant diurnal variation and seasonal decreases in conductance, with overall values similar to those in the literature. Global sensitivity analysis using non-parametric regression found transpiration flux and vapor pressure deficit to be the most important input variables to the calculation of bulk stomatal conductance, with absorbed net radiation and bulk boundary layer conductance being much less important. Conversely, bulk stomatal conductance was one of the most important inputs when calculating vine transpiration, further emphasizing the need for characterizing its response to environmental changes for use in vineyard water use modeling.

Citizen science for promoting a disease-resistant grape variety through a wine competition

The societal pressure to reduce the use of pesticides in Switzerland is steadily increasing. Viticulture is particularly in focus due to the frequent use of fungicides to combat downy and powdery mildew.

Ancient and recent construction of Terroirs

The local wine as an area identified and recognized is a complex socio-historical reality that calls an effort of observation and theoretical reflection using various social sciences