Terroir 2004 banner
IVES 9 IVES Conference Series 9 Viticultural zoning in D.O.C. Ribeiro (Galicia, NW Spain)

Viticultural zoning in D.O.C. Ribeiro (Galicia, NW Spain)

Abstract

[English version below]

L’AOC Ribeiro est la plus ancienne de Galice (NO de l’Espagne), avec une aire de production potentielle de 3.200 ha. Situé dans la région centrale de la vallée du Miño, le Ribeiro a un climat de tipe maritime tempéré qui se correspond avec la zone climatique II de Winkler. Bien que prédominent des variétés très productives (Palomino, Grenache), aujourd’hui beaucoup de vignerons sont en train de substituer ces cépages, au profit des variétés anciennes plus adaptées à la production des vins de qualité.
Le but de ce travail est caractériser les méso climats présents dans cette région viticole et aussi, identifier les endroits les plus favorables pour ces cépages anciens.
Nous disposons des données météorologiques fournies par sept nouvelles stations automatiques au cours de l’année 2003. Pour l’étude viticole, la cave coopérative qui commercialise plus du 60% des vins produits dans la région nous a proportionné les données relatives au degré alcoolique des raisins du millésime 2003. En préliminaire, toutes les données recueillies ont été intégrées à un système d’information géographique (SIG), pour générer la base cartographique du zonage. En ajoutant les données concernant la maturité des vignobles (degré alcoolique) avec un modèle numérique du terrain (MNT), nous avons raffiné le zonage méso climatique initial. De plus, cela nous permit d’identifier les zones mieux adaptées aux exigences des variétés traditionnelles.

The ‘Ribeiro’ is the most historically renowned Denomination of Origin (D.O.) in Galicia and includes some 3,200 hectares. This region is situated in the central part of the river Miño valley in northwest Spain and has a temperate maritime climate corresponding to Winkler´s II zone. Although there are very productive varieties of vines e.g. Palomino or Garnacha, these have been recently substituted by more traditional varieties better suited to the production of higher quality wines.
In the following article, we identify prevailing mesoclimates, in this particular vine growing and wine producing area and characterize the most suitable conditions for these varieties concerned. In order to distinguish among mesoclimates, data provided by seven new automatic meteorological stations during 2003 was utilized. In addition to this, the wine-producing cooperative commercialising over 60% of the production in the area concerned, facilitated details corresponding to Brix degrees when grapes harvested entered the cellars. These data on Potential Alcohol Content (PAC) were introduced into a geographic information system (GIS) for integration with a Digital Terrain Model (DTM) in order to obtain a zonification where mention of the identified mesoclimates present appear together with the most suitable areas for the traditional varieties.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

D. Blanco; C. Alvarez; J.M. Queijeiro

Vigo University, Departament of Plant Biological and Soil Science, Science Faculty, As Lagoas s/n 32004 Ourense, Spain

Contact the author

Keywords

Mesoclimates, geographic information systems, digital terrain model, traditional varieties, viticultural climatic characterization

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Climate regionalization of Uruguayan viticulture for ecological sustainability

Ecological sustainability refers to developing viticulture in adequate environmental conditions.

Effect of the winemaking technology on the phenolic compounds, foam parameters in sparklig wines

Contribution Sparkling wines elaborated following the traditional method undergo a second fermentation in closed bottles of base wines, followed by aging of wines with lees for at least 9 months. Most of the sparkling wines elaborated are white and rosé ones, although the production of red ones is highly increasing. One of the initial problems in red sparkling wine processing is to obtain suitable base wines that should have moderate alcohol content and astringency and adequate color intensity; which is difficult to obtain when grapes must be harvested at low phenolic and industrial maturity stage. The low phenolic maturity degree in the red grapes makes essential to choose an adequate winemaking methodology to obtain the base wines because the extracted polyphenols will vary according the winemaking technique: carbonic maceration or destemmed-crushed grapes.

Identification of caffeic acid as a major component of Moscatel wine protein sediment

Proteins play a significant role in the colloidal stability and clarity of white wines [1]. However, under conditions of high temperatures during storage or transportation, the proteins themselves can self-aggregate into light-dispersing particles causing the so-called protein haze [2]. Formation of these unattractive precipitates in bottled wine is a common defect of commercial wines, making them unacceptable for sale [3]. Previous studies identified the presence of phenolic compounds in the natural precipitate of white wine [4], contributing to the hypothesis that these compounds could be involved in the mechanism of protein haze formation.

Proanthocyanin composition in new varieties from monastrell

AIM: Proanthocyanidins are responsible in an important way for positive aspects in wines, such as body and color stability in red wines, but they are also responsible for sensory characteristics that can be negative for their quality when found in excessive concentrations.

Juice carbon isotope discrimination is related to vine growth and fruit quality of Barossa Shiraz

Aim: Interactions between soil, climate and management that modulate vine growth, yield and grape composition are strongly defined by vine water availability and nutrient uptake during the season. Carbon isotope discrimination (δ13C) has been used as an integrative measurement of vine water availability during the season, with the potential to identify spatial variations of terroir in