Terroir 2004 banner
IVES 9 IVES Conference Series 9 Geological history and landscape of the Coastal wine-growing region, South Africa

Geological history and landscape of the Coastal wine-growing region, South Africa

Abstract

The geology of the Western Cape testifies to the former existence of a late Precambrian supercontinent, its fragmentation, the closure of an ocean between the South African and South American continental precursors (Kalahari and Rio de la Plata cratons), the accumulation of marine sediments and limestones, and their compression during a collision between these cratons. This event took place during assembly of the southern supercontinent of Gondwana, over 500 million years ago. During the Cambrian the landscape of the western and southern parts of the Cape was eroded to form an alluvial plain with granite hills. From the Ordovician to the Carboniferous this plain intermittently subsided. The resultant Agulhas Sea, which at times extended from Vanrhynsdorp in the north to beyond Port Elizabeth in the east, and which was bordered by mountains to the west and north, received considerable volumes of sediment. These sediments were lifted and folded during the Permo-Triassic Cape Orogeny to form the mountains of the Cape Fold Belt, which are capped with erosion-resistant sandstones, whilst softer shales are locally preserved in downfolds.
After Gondwana rifted, a remnant of the Rio de la Plata craton remained attached to South Africa where it underlies the vineyards of the Coastal Region. Erosion was rapid under the warm, wet conditions which prevailed through much of the Cretaceous. By the end of the Cretaceous the main topographic features of the Coastal Region had already been roughed-out. Sculpting of the landscape into its modern form took place during the Tertiary and Quaternary, a time of sub-aerial erosion, pronounced changes in sea level and climatic variation, tending toward increasing aridity. The form of the modern landscape reflects the abilities of the rock structures and materials to resist protracted weathering and erosion.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

J. Wooldridge

ARC Infruitec-Nietvoorbij, Private Bag X5026, 7599 Stellenbosch, South Africa

Contact the author

Keywords

Geology, landscape, South Africa, terroir, vineyard, Western Cape, wine

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Climate and mesoclimate zonification in the Miño valley (Galicia, NW Spain)

Galicia est une région située dans le Nord-Ouest de l’Espagne avec une longe tradition de culture de la vigne. A jour d’oui la vigne occupe en Galicia presque 28.500 ha, desquelles 8.100 correspondent aux 5 zones ayant droit à l’appellation DO (« Denominación de Origen ») équivalent aux AOC françaises.

The impact of postharvest cooling of Sauvignon blanc grapes on the sensory profile and the chemical composition of the wines

Rapid processing of grapes after harvest has always been considered essential for achieving a balanced sensory wine profile.

Analyse of« terroirs» zoning on cooperative wineries (Côtes du Rhône area, France). Influence on vine agronomic response and on grape quality

Plusieurs caves coopératives de l’AOC Côtes du Rhône se servent des informations du zonage pour la sélection des vendanges en fonction du terroir d’origine, afin d’élaborer des «cuvées terroir» et d’exploiter ainsi le potentiel qualitatif de leurs secteurs.

NEAR INFRARED SPECTROSCOPY FOR THE ESTIMATION OF TEMPRANILLO BLANCO VOLATILE COMPOSITION ALONG GRAPE MATURATION

Grape volatile compounds are mainly responsible for wine aroma, so it is important to know the va-rietal aromatic composition throughout ripening process. Currently, there are no tools that allow mea-suring the aromatic composition of grapes, in intact berries and periodically, throughout ripening, in the vineyard or in the winery. For this reason, this work evaluated the use of near infrared spectroscopy (NIR) to estimate the aromatic composition and total soluble solids (TSS) of Tempranillo Blanco berries during ripening. For this purpose, NIR spectra (1100-2100 nm) were acquired from 240 samples of in-tact berries, collected at different dates, from veraison to overripening.

New crossbreed winegrape genotypes cultivated under rainfed conditions in a semi-arid Mediterranean region

Traditional drought tolerant varieties such as Cabernet Sauvignon, Monastrell, and Syrah [1], have been used as parents in the grapevine breeding program initiated by the Instituto Murciano de Investigación y Desarrollo Agrario y Medioambiental (IMIDA) in 1997 [2]. This work presents the results of evaluating three new genotypes obtained from crosses between ‘Monastrell’ and ‘Cabernet Sauvignon’ (MC16 and MC80) and between ‘Monastrell’ and ‘Syrah’ (MS104), comparing their performance under conditions of water scarcity and high temperatures with that of their respective parental varieties. For this purpose, the six genotypes were cultivated under controlled irrigation conditions (60% ETc) and rainfed conditions.