Terroir 2004 banner
IVES 9 IVES Conference Series 9 Geological history and landscape of the Coastal wine-growing region, South Africa

Geological history and landscape of the Coastal wine-growing region, South Africa

Abstract

The geology of the Western Cape testifies to the former existence of a late Precambrian supercontinent, its fragmentation, the closure of an ocean between the South African and South American continental precursors (Kalahari and Rio de la Plata cratons), the accumulation of marine sediments and limestones, and their compression during a collision between these cratons. This event took place during assembly of the southern supercontinent of Gondwana, over 500 million years ago. During the Cambrian the landscape of the western and southern parts of the Cape was eroded to form an alluvial plain with granite hills. From the Ordovician to the Carboniferous this plain intermittently subsided. The resultant Agulhas Sea, which at times extended from Vanrhynsdorp in the north to beyond Port Elizabeth in the east, and which was bordered by mountains to the west and north, received considerable volumes of sediment. These sediments were lifted and folded during the Permo-Triassic Cape Orogeny to form the mountains of the Cape Fold Belt, which are capped with erosion-resistant sandstones, whilst softer shales are locally preserved in downfolds.
After Gondwana rifted, a remnant of the Rio de la Plata craton remained attached to South Africa where it underlies the vineyards of the Coastal Region. Erosion was rapid under the warm, wet conditions which prevailed through much of the Cretaceous. By the end of the Cretaceous the main topographic features of the Coastal Region had already been roughed-out. Sculpting of the landscape into its modern form took place during the Tertiary and Quaternary, a time of sub-aerial erosion, pronounced changes in sea level and climatic variation, tending toward increasing aridity. The form of the modern landscape reflects the abilities of the rock structures and materials to resist protracted weathering and erosion.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

J. Wooldridge

ARC Infruitec-Nietvoorbij, Private Bag X5026, 7599 Stellenbosch, South Africa

Contact the author

Keywords

Geology, landscape, South Africa, terroir, vineyard, Western Cape, wine

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Kinetic investigations of the sulfite addition on flavanols

Sulfonated monomeric and dimeric flavan-3-ols are recently discovered in wine and proved to have great importance in understanding wine chemistry and quality [1, 2].

First insights on the intra-species diversity in V. berlandieri: environmental adaptation and agronomic performances when used as rootstock

In grafted plants, such as grapevine, increasing the diversity of rootstocks available to growers is an ideal strategy to get adaptation to climate change. The rootstocks used for grapevine are hybrids of various American Vitis, including V. berlandieri. The rootstocks currently used in vineyards are derived from breeding programs involving very small numbers of parental individuals.

Effects of auxin treatment on compositional and molecular ripening dynamics in grape varieties of northern Italy

Context and purpose of the study. The temperature increase related to ongoing climate changes is causing a progressive anticipation of the ripening time, negatively affecting grape quality at harvest.

Genotypic differences in early-stage root architectural traits and consequences for water uptake in three grapevine rootstocks differing in drought tolerance

Root architecture (RSA), the spatial-temporal arrangement of a root system in soil, is essential for edaphic resources acquisition by the plant, and thus contributes largely to its productivity and adaptation to environmental stresses, particularly soil water deficit. In grafted grapevine, while the degree of drought tolerance induced by the rootstock has been well documented in the vineyard, information about the underlying physiological processes, particularly at the root level, is scarce, due to the inherent difficulties in observing large root systems in situ. The aims of this study were (i) to determine the phenotypic differences in traits related to root distribution and morphology along the substrate profile in different Vitis rootstocks during early growth, (ii) to assess the plasticity of these traits to soil water deficit and (iii) to quantify their relationships with plant water uptake.

Streamlining rootstock selection: new indices for efficiency and stability in viticulture

Grapevine rootstocks play a pivotal role in influencing scion vigor, yield, and fruit quality, making their selection critical for sustainable vineyard management.