Terroir 2004 banner
IVES 9 IVES Conference Series 9 Geological history and landscape of the Coastal wine-growing region, South Africa

Geological history and landscape of the Coastal wine-growing region, South Africa

Abstract

The geology of the Western Cape testifies to the former existence of a late Precambrian supercontinent, its fragmentation, the closure of an ocean between the South African and South American continental precursors (Kalahari and Rio de la Plata cratons), the accumulation of marine sediments and limestones, and their compression during a collision between these cratons. This event took place during assembly of the southern supercontinent of Gondwana, over 500 million years ago. During the Cambrian the landscape of the western and southern parts of the Cape was eroded to form an alluvial plain with granite hills. From the Ordovician to the Carboniferous this plain intermittently subsided. The resultant Agulhas Sea, which at times extended from Vanrhynsdorp in the north to beyond Port Elizabeth in the east, and which was bordered by mountains to the west and north, received considerable volumes of sediment. These sediments were lifted and folded during the Permo-Triassic Cape Orogeny to form the mountains of the Cape Fold Belt, which are capped with erosion-resistant sandstones, whilst softer shales are locally preserved in downfolds.
After Gondwana rifted, a remnant of the Rio de la Plata craton remained attached to South Africa where it underlies the vineyards of the Coastal Region. Erosion was rapid under the warm, wet conditions which prevailed through much of the Cretaceous. By the end of the Cretaceous the main topographic features of the Coastal Region had already been roughed-out. Sculpting of the landscape into its modern form took place during the Tertiary and Quaternary, a time of sub-aerial erosion, pronounced changes in sea level and climatic variation, tending toward increasing aridity. The form of the modern landscape reflects the abilities of the rock structures and materials to resist protracted weathering and erosion.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

J. Wooldridge

ARC Infruitec-Nietvoorbij, Private Bag X5026, 7599 Stellenbosch, South Africa

Contact the author

Keywords

Geology, landscape, South Africa, terroir, vineyard, Western Cape, wine

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Wine fining with yeast protein extract: effect on polyphenol composition and the related sensorial attributes

Polyphenols, namely anthocyanins and flavanols, are key compounds for wine color definition and taste perception (astringency and bitterness). During winemaking, several processes could influence the polyphenol composition and, therefore, the organoleptic parameters of wine.

Know thy enemy: oxygen or storage temperature?

It is well known that high oxygen levels and high ageing temperatures are detrimental to white wine’s composition and ageing capacity. However, these results, though valuable

Soil and nutritional survey of Greek vineyards from the prefecture of Macedonia, Northern Greece, and from the island of Santorini

Vitis vinifera L. is one of the most important cultures for the soil and
climate conditions of Northern Greece and Santorini. However, very little information is provided with regard to its nutritional requirements and critical levels of nutrient deficiencies and toxicities. The aim of this study was to provide an integrated nutritional survey for the Greek conditions of wine and table varieties.

Soil incorporation of new superabsorbent hydrogels to improve vine tolerance to summer stress: physiological validation and vineyard applications

Hydrogels are soil-conditioning materials capable of absorbing substantial amounts of water relative to their weight.

Identification and evaluation of the winemaking sub-zones of the PDO Amyndeo winegrowing region

Context and purpose of the study. The concept of terroir encompasses the investigation of the physical environment’s influence on grapevine physiology, grape composition, and wine quality, with an emphasis on employing viticultural zoning techniques to systematically characterize and analyze terroirs.