Terroir 2004 banner
IVES 9 IVES Conference Series 9 Geological history and landscape of the Coastal wine-growing region, South Africa

Geological history and landscape of the Coastal wine-growing region, South Africa

Abstract

The geology of the Western Cape testifies to the former existence of a late Precambrian supercontinent, its fragmentation, the closure of an ocean between the South African and South American continental precursors (Kalahari and Rio de la Plata cratons), the accumulation of marine sediments and limestones, and their compression during a collision between these cratons. This event took place during assembly of the southern supercontinent of Gondwana, over 500 million years ago. During the Cambrian the landscape of the western and southern parts of the Cape was eroded to form an alluvial plain with granite hills. From the Ordovician to the Carboniferous this plain intermittently subsided. The resultant Agulhas Sea, which at times extended from Vanrhynsdorp in the north to beyond Port Elizabeth in the east, and which was bordered by mountains to the west and north, received considerable volumes of sediment. These sediments were lifted and folded during the Permo-Triassic Cape Orogeny to form the mountains of the Cape Fold Belt, which are capped with erosion-resistant sandstones, whilst softer shales are locally preserved in downfolds.
After Gondwana rifted, a remnant of the Rio de la Plata craton remained attached to South Africa where it underlies the vineyards of the Coastal Region. Erosion was rapid under the warm, wet conditions which prevailed through much of the Cretaceous. By the end of the Cretaceous the main topographic features of the Coastal Region had already been roughed-out. Sculpting of the landscape into its modern form took place during the Tertiary and Quaternary, a time of sub-aerial erosion, pronounced changes in sea level and climatic variation, tending toward increasing aridity. The form of the modern landscape reflects the abilities of the rock structures and materials to resist protracted weathering and erosion.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

J. Wooldridge

ARC Infruitec-Nietvoorbij, Private Bag X5026, 7599 Stellenbosch, South Africa

Contact the author

Keywords

Geology, landscape, South Africa, terroir, vineyard, Western Cape, wine

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Aroma diversity of Amarone commercial wines

Amarone is an Italian red wine produced in the Valpolicella area, in north-eastern Italy. Due to its elaboration with withered grapes, Amarone is a rather unique example of dry red wine. However, there is very limited data so far concerning the volatile composition of commercial Amarone wines, which also undergo a cask aging of 2-4 years before release.

On the losses of dissolved CO2 during champagne aging

A misconception lingers in the minds of some wine consumers that Champagne wines don’t age. It’s largely a myth, certainly as far as the best cuvees are concerned. Actually, during the so-called autolysis period of time (in the closed bottle, after the “prise de mousse”), complex chemical reactions take place when the wine remains in contact with the dead yeast cells, which progressively bring complex and very much sought-after aromas to champagne. Nevertheless, despite their remarkable impermeability to liquid and air, caps or natural cork stoppers used to cork the bottles are not 100% hermetic with regard to gas transfers. Gas species therefore very slowly diffuse through the cap or cork stopper, along their respective inverse partial pressure. After the “prise de mousse”, because the partial pressure of CO2 in the bottleneck reaches up to 6 bars (at 12 °C), gaseous CO2 progressively diffuse from the bottle to the ambient air
(where the partial pressure of gaseous CO2 is only of order of 0,0004 bar).

Innovations in the use of bentonite in enology: interactions with grape and wine proteins, colloids, polyphenols and aroma compounds.

The use of bentonite in oenology rounds around the limpidity and the stability that determine consumer acceptability. As a matter of fact, the haze formation in wine reduces its commercial value and makes it unacceptable for sale. Stabilization treatments are, therefore, essential to ensure a long-time limpidity and to forecast the formation of deposits in the bottle. Bentonite that is normally used in oenology for clarifying-fining purpose, shows a natural clay-based mineral structure allowing it to swell and to jelly in water and hence in must and wine.

Bioprospecting of native Metschnikowia pulcherrima strains for biocontrol and aroma enhancement in the wine production chain

Metschnikowia pulcherrima is a well-studied non-conventional oenological yeast due to its positive contributions to winemaking as a bioprotective agent and as an aroma-enhancing starter in sequential fermentations with Saccharomyces cerevisiae (Binati et al., 2023; Canonico et al., 2023).

Use of multispectral satellite for monitoring vine water status in mediterranean areas

The development of new generations of multispectral satellites such as Sentinel-2 opens possibilities as to vine water status assessment (Cohen et al., 2019). Based on a three years field campaign, a model of Stem Water Potential (SWP) estimation on vine using four satellite bands in Red, Red-Edge, NIR and SWIR domains was developed (Laroche-Pinel et al., 2021). The model relies on SWP field measures done using a pressure chamber (Scholander et al., 1965), which is a common, robust and precise method to assess vine water status (Acevedo-Opazo et al., 2008). The model was mainly developed from from SWP measures on Syrah N (Laroche Pinel E., 2021).

A large scale monitoring was organized in different vineyards in the Mediterranean region in 2021. 10 varieties amongst the most represented in this area were monitored (Cabernet sauvignon N, Chardonnay B, Cinsault N, Grenache N, Merlot N, Mourvèdre N, Sauvignon B, Syrah N, Vermentino B, Viognier B). The model was used to produce water status maps from Sentinel-2 images, starting from the beginning of June (fruit set) up to September (harvest). The average estimated SWP for each vine was compared to actual field SWP measures done by wine growers or technicians during usual monitoring of irrigation programs. The correlations between mean estimated SWP and mean measured SWP were at the same level than expected by the model. (Laroche Pinel, 2021) The general SWP kinetics were comparable. The estimated SWP would have led to same irrigation decisions concerning the date of first irrigation in comparison with measured SWP.

Acevedo-Opazo, C., Tisseyre, B., Ojeda, H., Ortega-Farias, S., Guillaume, S. (2008). Is it possible to assess the spatial variability of vine water status? OENO One, 42(4), 203.
Cohen, Y., Gogumalla, P., Bahat, I., Netzer, Y., Ben-Gal, A., Lenski, I., … Helman, D. (2019). Can time series of multispectral satellite images be used to estimate stem water potential in vineyards? In Precision agriculture ’19, The Netherlands: Wageningen Academic Publishers, pp. 445–451.
Laroche-Pinel, E., Duthoit, S., Albughdadi, M., Costard, A. D., Rousseau, J., Chéret, V., & Clenet, H. (2021). Towards vine water status monitoring on a large scale using sentinel-2 images. remote sensing, 13(9), 1837.
Laroche-Pinel,E. (2021). Suivi du statut hydrique de la vigne par télédétection hyper et multispectrale. Thèse INP Toulouse, France.
Scholander, P.F., Bradstreet, E.D., Hemmingsen, E.A., & Hammel, H.T. (1965). Sap pressure in vascular plants: Negative hydrostatic pressure can be measured in plants. Science, 148(3668), 339–346.