Terroir 2004 banner
IVES 9 IVES Conference Series 9 Marketing and zoning (“Great Zoning”): researches and various considerations

Marketing and zoning (“Great Zoning”): researches and various considerations

Abstract

[English version below]

Dans de précédents travaux sur le zonage “GRANDE ZONAZIONE” (GZ) (“Grand Zonage”), on a traité, entre autre, de la “GRANDE FILIERA” (GF) (Grande filière) où parmi les 54 descripteurs prévus pour lire et évaluer par exemple un zonage, sont compris aussi la Communication – Marketing et les aspects qui y sont liés, comme facteurs fondamentaux du “GRANDE ZONAZIONE” (GZ) “Grand Zonage” qui part des aspects économiques, sociaux et existentiels qui représentent en filière du bas vers le haut les “GRANDI OBIETTIVI” (GO) (“Grands Objectifs” de l’activité vitivinicole aussi et donc du zonage, et qui ne part pas des aspects “techniques” typiques du “Petit Zonage” (PZ) ou “Zonage Thématique” tels que par exemple le sol, le climat, le modèle de vignoble et sa gestion, etc., qui représentent les “moyens” pour atteindre les “grands objectifs” cités ci-dessus (Cargnello G. 1997, 1999 a-b et 2003 a-c).
Il faut donc souligner à nouveau que les “grands objectifs” ne doivent pas être confondus, comme il arrive souvent dans notre secteur aussi, avec les moyens utilisés pour atteindre ces objectifs. L’objectif de ce travail est de démontrer ultérieurement l’importance fondamentale de l’aspect économique dans le zonage, et en particulier la composante communication et marketing qui doit cependant être gérée de manière équitable et harmonique en ce qui concerne les autres facteurs de l’activité productive, c’està-dire les aspects techniques, économiques-sociaux, et existentiels, prévus dans notre “Grand Filière” (GF).
Ce travail a été conduit a Ormelle dans le Nord-Est de l’Italie, en Vénétie en Province de Treviso dans la “TERRA DELLA VALLE DEL PIAVE” (“Terre de la Valléè du Piave”), en suivant la méthodologie de base suivante: Cargnello G., (1999); 2003a; Carbonneau A., Cargnello G., (2003). Les résultats philosophiques, méthodologiques et applicatifs obtenus dans cette recherche sont très encourageants et nous induisent à intensifier ces activités, dans le but d’appliquer dans la pratique du zonage les indications d’ordre technique, économique, social et existentiel fournies par ces recherches sur le “Grand Zonage”.

In preceding works on zoning “GRANDE ZONAZIONE” (GZ) (“Great Zoning”) the so-called “GRANDE FILIERA” (GF) (“Great Chain”) has been discussed. Within this frame, among the 54 indicators which can be used to read and to appraise a zoning process there are also Marketing and Promotion as fundamental factors of the so-called “GRANDE ZONAZIONE” (GZ) (“Great Zoning”). This GZ starts from economic, social and existential aspects which represent from the bottom of the chain the “GRANDI OBIETTIVI) (GO) (“Great Objectives”) of the vine growing process too and therefore of zoning and does not start from “technical” aspects which are typical of the so-called “Small Zoning” or ” Thematic Zoning”, as for instance soil, climate, vineyard model and its management, etc., which instead represent the “tools” to reach the “great objectives” above quoted (Cargnello G. 1997 and 2003).
Hence, we have to emphasize that the “great objectives” must not be confused, as it often happens also in our research groups, with the means used for achieving such objectives.
The goal of this work is to stress the basic role that either economic issues or marketing and promotion assume in zoning. The latter, however, should be managed in a fair and unbiased way according to the other technical, economic-social and existential factors of the production process as stated in the so-called “Great Chain”.
The work has been carried out in the Northeast part of Italy, in the Veneto Region and, more specifically, in the Province of Treviso in the “TERRA DELLA VALLE DEL PIAVE” (“Land of the Piave Valley”), taking into account the following basic methodology: Cargnello G., (1999); 2003a; Carbonneau A., Cargnello G., (2003).
The philosophical, methodological and application results coming from these researches are very encouraging. They induce us to intensify them in order to put into practice, in the zoning process, the technical, economic, social and existential indications on the “Great Zoning”, which emerge from these researches.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

G. Cargnello (1), L. Galletto (2), S. Scaggiante (2), L. Pezza (1), C. Brugnera (1)(2), S. Dall’Acqua (1)(2), M. Nardin (1)(2)

(1) SOC Tecniche Colturali – Istituto Sperimentale per la Viticoltura – Viale XXVIII Aprile 26 – 31015 Conegliano (TV) Italy
(2) Università di Padova – Corso di Laurea in Scienze Viticole ed Enologiche Conegliano (TV) – Viale XXVIII Aprile 26 – Italy

Contact the author

Keywords

communication, marketing, zoning, great zoning

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Vinos de tea en la isla de la Palma

En el Norte de la Isla de La Palma (Islas Canarias), se cultivan un conjunto de varietales constituidos principalmente por Negramoll, Listán blanco, Prieto, Albillo y Muñeco.

Evolution of grape aromatic composition in cv. Ugni blanc

Cognac is a protected appellation of origin where world-famous brandies are produced. These brandies are obtained by the traditional double distillation of wines from Ugni blanc cultivar

Effect of ozone treatments in wine production on colour traits, volatile composition, and sensory characteristics of young and short-term aged white wines

The main aim of WiSSaTech project (PRIN P2022LXY3A),supported by the Italian Ministero dell’Università e della Ricerca and European Union-NextGenerationEU, is to investigate eco-friendly and safe alternatives to sulphur dioxide (SO2) in wine production.

How to reduce SO2 additions in wine with the aid of non-conventional yeasts

Among the factors that influence the sensory quality, style, safety, sustainability, and sense of place of a wine, the contributions of microbial biodiversity are widely becoming more recognized. Throughout winemaking, multiple biochemical reactions are performed by a myriad of different microorganisms interacting in many ways.

Comparison of imputation methods in long and varied phenological series. Application to the Conegliano dataset, including observations from 1964 over 400 grape varieties

A large varietal collection including over 1700 varieties was maintained in Conegliano, ITA, since the 1950s. Phenological data on a subset of 400 grape varieties including wine grapes, table grapes, and raisins were acquired at bud break, flowering, veraison, and ripening since 1964. Despite the efforts in maintaining and acquiring data over such an extensive collection, the data set has varying degrees of missing cases depending on the variety and the year. This is ubiquitous in phenology datasets with significant size and length. In this work, we evaluated four state-of-the-art methods to estimate missing values in this phenological series: k-Nearest Neighbour (kNN), Multivariate Imputation by Chained Equations (mice), MissForest, and Bidirectional Recurrent Imputation for Time Series (BRITS). For each phenological stage, we evaluated the performance of the methods in two ways. 1) On the full dataset, we randomly hold-out 10% of the true values for use as a test set and repeated the process 1000 times (Monte Carlo cross-validation). 2) On a reduced and almost complete subset of varieties, we varied the percentage of missing values from 10% to 70% by random deletion. In all cases, we evaluated the performance on the original values using normalized root mean squared error. For the full dataset we also obtained performance statistics by variety and by year. MissForest provided average errors of 17% (3 days) at budbreak, 14% (4 days) at flowering, 14.5% (7 days) at veraison, and 17% (3 days) at maturity. We completed the imputations of the Conegliano dataset, one of the world’s most extensive and varied phenological time series and a steppingstone for future climate change studies in grapes. The dataset is now ready for further analysis, and a rigorous evaluation of imputation errors is included.