Terroir 2004 banner
IVES 9 IVES Conference Series 9 Outils de caracterisation et zonage des paysages viticoles: application aux vignobles français

Outils de caracterisation et zonage des paysages viticoles: application aux vignobles français

Abstract

[English version below]

Un paysage viticole est une relation entre des formes, dimension objective, et la perception que nous en avons, dimension subjective, émotionnelle. La viticulture n’est pas seulement productrice d’un vin, elle contribue également à façonner le paysage. Pourtant, jusqu’à présent, la connaissance des terroirs était principalement basée sur la caractérisation de leur aptitude à produire des vins de qualité.
Une méthodologie d’étude globale du paysage a été validée sur un site pilote champenois durant l’été 2003. Elle associait les acteurs du monde viticole et des collectivités territoriales au développement de la démarche paysagère locale. Elle liait l’étude sensible du paysage à la prise en compte du volet environnemental associé au terroir (ruissellement, érosion, biodiversité…).
L’élaboration de telles méthodologies nécessite la formalisation d’outil de caractérisation et de zonage des paysages viticoles.
Les principales données permettant de caractériser un paysage (cartographie, photos aériennes, données satellites, relevés de terrains bloc diagramme, données économiques …) sont décrites et présentées à partir de cas concrets.
Les principaux outils paysagers d’analyse et de communication, tels les sorties terrains ou un Système d’Information Géographique ont été étudiés.
Au final, l’objectif est de réaliser une « boîte à outils » permettant à différents niveaux d’échelle (national, régional, local) d’alimenter les démarches paysagères et environnementales, associées aux territoires viticoles.

Vineyard landscapes are a relationship between shapes which are objective and the perception that one has of them, which is subjective and emotional. Without this relationship, landscapes cannot exist. Vine farming does not only produce wine, it also contributes to design landscapes. Yet, so far, geographical specificities were essentially based on the characterisation of their ability to produce quality wine.
A comprehensive landscape study methodology was validated on a champagne pilot-site in summer 2003. It associated a sensitive landscape study to the environmental issues (runoff, erosion, biodiversity) and involved vine farmers and the district laborating such a methodology requires to formalise characterisation and zoning tools for vineyards landscapes.
The main landscape characterisation data are described and presented through case studies (cartography, air photographs, satellite data, site measures, economical data).
The main analysis and communication landscape tools, such as geographic information systems and onsite visits were studies. Finally, the aim is to create a tool box allowing vineyard landscape and environmental management on a local, regional and national scale.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

J. Rochard, A. Lasnier, C. Boiget, O. Cormier

ITV France –pôle environnement –unité d’Epernay-17 rue Jean Chandon Moët BP20046
51202 EPERNAY cedex

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

What is the best time to harvest grapes destined for withering? Ripeness and dehydration length affect phenolic composition of Nebbiolo grapes

Sfursat di Valtellina is a DOCG reinforced wine produced in Valtellina from partially withered red grapes of Vitis vinifera L. cv. Nebbiolo. The grape ripeness degree and the dehydration process strongly influence the physicochemical characteristics of grapes [1, 2, 3]. In particular, grape skin and seeds contain several classes of phenolic compounds strictly associated with red wine quality, which are significantly affected by these factors [4]. The aim of this research is to assess the combined influence of different ripeness levels and withering rates on the standard chemical composition and phenolic profile of winegrape in order to provide new insights and approaches to the management of withering, searching for the valorization of grape potentialities.

Hyperspectral imaging and Raman spectroscopy, nondestructive methods to assess wine grape composition

Grape composition is of high interest for producing quality wines. For that, grape analyses are necessary, and they still require sample preparation, whether with classical analyses or with NIR analyses.

Response of grapevine cv. “Tinta Roriz” (vitis vinifera L.) to moderate irrigation in the Douro region, Portugal

The behaviour of cv. “Tinta Roriz” (Vitis vinifera L.), was studied when moderate drip irrigation was applied from veraison to harvest. Field studies were conducted during three growing seasons

Recent advances in measuring, estimating, and forecasting grapevine yield and quality

Grapevine yield and fruit quality are two major drivers of input allocation and, ultimately, revenue for grape producers. Because yield and fruit quality vary substantially from year-to-year and within a single block, opportunities exist for optimization via precision management activities that could lead to more profitable and sustainable grape production. Here, we review recent advances in the techniques and technology used to measure, estimate, and forecast grapevine yield and fruit quality. First, we discuss direct “measurement” of yield and quality (i.e. ground-truth data generation), with an emphasis on potential for scalability and automation. Second, we discuss technology and techniques that do not directly measure yield and quality, but use correlated measurements for their estimation.

Application of high-throughput sequencing tools for characterisation of microbial communities during alcoholic fermentation

Developments in high-throughput sequencing (HTS) technologies allow us to obtain large amounts of microbial information from wine and must samples. Thus approaches, that are aimed at characterising the microbial diversity during fermentation, can be enhanced, or possibly even replaced, with HTS-based metabarcoding. To reduce experimental biases and increase data reproducibility, we compared 3 DNA extraction methods by evaluating differences in the fungal diversity with Riesling alcoholic fermentation samples at four different vineyards. The fungal diversity profiling was done using the genetic markers ITS2 and D2 using metabarcoding. The extraction methods compared consisted of a commercial kit, a recently published protocol that includes a DNA enhancer, and a protocol based on a buffer containing common inhibitor removal reagents. All methods were able to distinguish vineyard effects on the fungal diversity, but the results differed quantitatively.