Terroir 2004 banner
IVES 9 IVES Conference Series 9 Outils de caracterisation et zonage des paysages viticoles: application aux vignobles français

Outils de caracterisation et zonage des paysages viticoles: application aux vignobles français

Abstract

[English version below]

Un paysage viticole est une relation entre des formes, dimension objective, et la perception que nous en avons, dimension subjective, émotionnelle. La viticulture n’est pas seulement productrice d’un vin, elle contribue également à façonner le paysage. Pourtant, jusqu’à présent, la connaissance des terroirs était principalement basée sur la caractérisation de leur aptitude à produire des vins de qualité.
Une méthodologie d’étude globale du paysage a été validée sur un site pilote champenois durant l’été 2003. Elle associait les acteurs du monde viticole et des collectivités territoriales au développement de la démarche paysagère locale. Elle liait l’étude sensible du paysage à la prise en compte du volet environnemental associé au terroir (ruissellement, érosion, biodiversité…).
L’élaboration de telles méthodologies nécessite la formalisation d’outil de caractérisation et de zonage des paysages viticoles.
Les principales données permettant de caractériser un paysage (cartographie, photos aériennes, données satellites, relevés de terrains bloc diagramme, données économiques …) sont décrites et présentées à partir de cas concrets.
Les principaux outils paysagers d’analyse et de communication, tels les sorties terrains ou un Système d’Information Géographique ont été étudiés.
Au final, l’objectif est de réaliser une « boîte à outils » permettant à différents niveaux d’échelle (national, régional, local) d’alimenter les démarches paysagères et environnementales, associées aux territoires viticoles.

Vineyard landscapes are a relationship between shapes which are objective and the perception that one has of them, which is subjective and emotional. Without this relationship, landscapes cannot exist. Vine farming does not only produce wine, it also contributes to design landscapes. Yet, so far, geographical specificities were essentially based on the characterisation of their ability to produce quality wine.
A comprehensive landscape study methodology was validated on a champagne pilot-site in summer 2003. It associated a sensitive landscape study to the environmental issues (runoff, erosion, biodiversity) and involved vine farmers and the district laborating such a methodology requires to formalise characterisation and zoning tools for vineyards landscapes.
The main landscape characterisation data are described and presented through case studies (cartography, air photographs, satellite data, site measures, economical data).
The main analysis and communication landscape tools, such as geographic information systems and onsite visits were studies. Finally, the aim is to create a tool box allowing vineyard landscape and environmental management on a local, regional and national scale.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

J. Rochard, A. Lasnier, C. Boiget, O. Cormier

ITV France –pôle environnement –unité d’Epernay-17 rue Jean Chandon Moët BP20046
51202 EPERNAY cedex

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Prediction of sauvignon blanc quality gradings with static headspace−gas chromatography−ion mobility spectrometry (SHS−GC−IMS) and machine learning

The main goal of the current study is the development of a cost-effective and easy-to-use method suitable for use in the laboratory of commercial wineries to analyze wine aroma. Additionally, this study attempted to establish a prediction model for wine quality gradings based on their aroma, which could reveal the important aroma compounds that correlate well with different grades of perceived quality METHODS: Parameters of the SHS−GC−IMS instrument were first optimized to acquire the most desirable chromatographic resolution and signal intensities. Method stability was then exhibited by repeatability and reproducibility. Subsequently, compound identification was conducted. After method development, a total of 143 end-ferment wine samples of three different quality gradings from vintage 2020 were analyzed with the SHS−GC−IMS instrument. Six machine learning methods were employed to process the results and construct a quality prediction model. Techniques that aim to explain the model to extract useful insights were also applied.

Un modello di lavoro per lo studio dell’ up-grading tecnologico del vigneto nel Veneto Occidentale. Connettività degli attori e mappatura su dati avepa integrati con rilevamento speditivo e qualitativo

Il lavoro si prefigge di esaminare la propensione alla modernizzazione della viticoltura del Veneto Occidentale, letto attraverso la diffusione di forme di allevamento a sviluppo contenuto.

Composition and molar mass distribution of different must and wine colloids

A major problem for winemakers is the formation of proteinaceous haze after bottling. Although the exact mechanisms remain unclear, this haze is formed by unfolding and agglomeration of grape proteins, being additionally influenced by numerous further factors.

Permanent cover cropping with reduced tillage increased resiliency of wine grape vineyards to climate change

Majority of California’s vineyards rely on supplemental irrigation to overcome abiotic stressors. In the context of climate change, increases in growing season temperatures and crop evapotranspiration pose a risk to adaptation of viticulture to climate change. Vineyard cover crops may mitigate soil erosion and preserve water resources; but there is a lack of information on how they contribute to vineyard resiliency under tillage systems. The aim of this study was to identify the optimum combination of cover crop sand tillage without adversely affecting productivity while preserving plant water status. Two experiments in two contrasting climatic regions were conducted with two cover crops, including a permanent short stature grass (P. bulbosa hybrid), barley (Hordeum spp), and resident vegetation under till vs. no-till systems in a Ruby Cabernet (V. vinifera spp.) (Fresno) and a Cabernet Sauvingon (Napa) vineyard. Results indicated that permanent grass under no-till preserved plant available water until E-L stage 17. Consequently, net carbon assimilation of the permanent grass under no-till system was enhanced compared to those with barley and resident vegetation. On the other hand, the barley under no-till system reduced grapevine net carbon assimilation during berry ripening that led to lower content of nonstructural carbohydrates in shoots at dormancy. Components of yield and berry composition including flavonoid profile at either site were not adversely affected by factors studied. Switching to a permanent cover crop under a no-till system also provided a 9% and 3% benefit in cultural practices costs in Fresno and Napa, respectively. The results of this work provides fundamental information to growers in preserving resiliency of vineyard systems in hot and warm climate regions under context of climate change.

Chemical and sensory profile of Brazilian red wines upon the cultivar and geographic origin of vineyards

Many vineyards implanted in Brazil in the last 20 years are placed under very different natural conditions if compared to Serra Gaúcha, the oldest and more traditional viticultural region in the country.