Terroir 2004 banner
IVES 9 IVES Conference Series 9 Zoning for drinking, tasting the territory place (“Great Zonation”): first considerations and methodology

Zoning for drinking, tasting the territory place (“Great Zonation”): first considerations and methodology

Abstract

Following the idea of « Grande Filiera » (GF) (Great chain), of « Grande Zonazione » (GZ) (Great Zonation), of “interpretation, estimation and valorisation of vineyards and wines landscape, of “qualities”(we have classified more than ninety), of quality economy.
Following the rich existing bibliography on organoleptic analyses and estimation of one wine, one product, as already publicised, we think it is somewhat limitative and unsatisfying to assign one price, to evaluate one product only and only in function of quality or for example of organoleptic evaluation and/or eno-chemical.
In the present paper we want to give an innovative contribute (maybe too innovative), philosophical, methodological, in order to evaluate one product, for example wine, also (I could say particularly) for what it represents outside of the bottle content.
Consequently for us, and probably not only for us, for example a bottle content should be evaluated, drank for getting high of a territory, for delighting, for “TASTING” and enjoying, drinking the territory, “PLACE” of origin, which as already publicised by us (Cargnello G. 1997), comprises all its resources: pedological, climatic, vitivinicultural, cultural, and coltural, monumental, hystorical, environmental, human, commercial…etc…: and for more information and completing the “filiera” consult: Cargnello G., 2003.
Naturally going beyond wrapping, stamping and else.
If its true, as its true, what above explained, zoning should be done, in order to taste and enjoy the territory while drinking wine, and TASTE A PLACE of provenience in its globality and in “filiera” taking account at least of the product (organoleptic quality), of consumer (preference and price), of producer (profit), of respect and protection of the environment in the whole sense and thus in particular way to “Taste a place” of product provenience; as concretises by information methodology CIMEC presented with success at international level.
This is philosophical and methodological “innovative” contribute we would like to concretise in a so called “GREAT ZONATION”, approaching PLACE of origin of wine to wine and zonation, in order to drink and TASTE the territory.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Giovanni Cargnello (collaboration de Rosario di Gaetano e Lorenzo Lovat)

Directeur SOC Tecniche Colturali – Istituto Sperimentale per la Viticoltura – Via Enrico De Nicola, 11 – 31015 Conegliano (Treviso) Italy

Contact the author

Keywords

Zoning for drinking territory, land, great zonation, great chain, viticulture

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Response of Shiraz/101‐14 mgt to in‐row vine spacing

Knowledge of vine reaction to plant spacing under high potential soil conditions is restricted. This study was done to determine effects of vine spacing

Narrow terraces and alternative training systems for steep sloop viticulture – Douro region

In Douro Region, vineyards are usually planted on hillsides with steep sloops. The models currently used for planting those vineyards are, depending on the initial slope of the hillside, vertical planting or terraces.

Effects of stress memory on grapevine resilience in response to recurrent drought and recovery events 

Plants have evolved different strategies to cope with environmental stresses and, although still debated, it was observed that they can remember past stress occurrence.
Anatomical and physiological adjustments have been observed in different grapevine cultivars after repeated drought exposure, however epigenetic, transcriptional and biochemical changes associated with drought-primed ecological memory have been poorly studied.
This work was conceived to test whether exposure to recurring events of mild drought could prime vines to endure severe drought stress. Particularly, we investigated whether the expected improved stress tolerance of Vitis vinifera cv Nebbiolo plants subjected over years to moderate and long-lasting water stress events (WS-primed) depended on molecular memory phenomena or on resetting of stress-induced signals.

Optimizing stomatal traits for future climates

Stomatal traits determine grapevine water use, carbon supply, and water stress, which directly impact yield and berry chemistry. Breeding for stomatal traits has the strong potential to improve grapevine performance under future, drier conditions, but the trait values that breeders should target are unknown. We used a functional-structural plant model developed for grapevine (HydroShoot) to determine how stomatal traits impact canopy gas exchange, water potential, and temperature under historical and future conditions in high-quality and hot-climate California wine regions (Napa and the Central Valley). Historical climate (1990-2010) was collected from weather stations and future climate (2079-99) was projected from 4 representative climate models for California, assuming medium- and high-emissions (RCP 4.5 and 8.5). Five trait parameterizations, representing mean and extreme values for the maximum stomatal conductance (gmax) and leaf water potential threshold for stomatal closure (Ψsc), were defined from meta-analyses. Compared to mean trait values, the water-spending extremes (highest gmax or most negative Ysc) had negligible benefits for carbon gain and canopy cooling, but exacerbated vine water use and stress, for both sites and climate scenarios. These traits increased cumulative transpiration by 8 – 17%, changed cumulative carbon gain by -4 – 3%, and reduced minimum water potentials by 10 – 18%. Conversely, the water-saving extremes (lowest gmax or least negative Ψsc) strongly reduced water use and stress, but potentially compromised the carbon supply for ripening. Under RCP 8.5 conditions, these traits reduced transpiration by 22 – 35% and carbon gain by 9 – 16% and increased minimum water potentials by 20 – 28%, compared to mean values. Overall, selecting for more water-saving stomatal traits could improve water-use efficiency and avoid the detrimental effects of highly negative canopy water potentials on yield and quality, but more work is needed to evaluate whether these benefits outweigh the consequences of minor declines in carbon gain for fruit production.