Terroir 2004 banner
IVES 9 IVES Conference Series 9 Zoning for drinking, tasting the territory place (“Great Zonation”): first considerations and methodology

Zoning for drinking, tasting the territory place (“Great Zonation”): first considerations and methodology

Abstract

Following the idea of « Grande Filiera » (GF) (Great chain), of « Grande Zonazione » (GZ) (Great Zonation), of “interpretation, estimation and valorisation of vineyards and wines landscape, of “qualities”(we have classified more than ninety), of quality economy.
Following the rich existing bibliography on organoleptic analyses and estimation of one wine, one product, as already publicised, we think it is somewhat limitative and unsatisfying to assign one price, to evaluate one product only and only in function of quality or for example of organoleptic evaluation and/or eno-chemical.
In the present paper we want to give an innovative contribute (maybe too innovative), philosophical, methodological, in order to evaluate one product, for example wine, also (I could say particularly) for what it represents outside of the bottle content.
Consequently for us, and probably not only for us, for example a bottle content should be evaluated, drank for getting high of a territory, for delighting, for “TASTING” and enjoying, drinking the territory, “PLACE” of origin, which as already publicised by us (Cargnello G. 1997), comprises all its resources: pedological, climatic, vitivinicultural, cultural, and coltural, monumental, hystorical, environmental, human, commercial…etc…: and for more information and completing the “filiera” consult: Cargnello G., 2003.
Naturally going beyond wrapping, stamping and else.
If its true, as its true, what above explained, zoning should be done, in order to taste and enjoy the territory while drinking wine, and TASTE A PLACE of provenience in its globality and in “filiera” taking account at least of the product (organoleptic quality), of consumer (preference and price), of producer (profit), of respect and protection of the environment in the whole sense and thus in particular way to “Taste a place” of product provenience; as concretises by information methodology CIMEC presented with success at international level.
This is philosophical and methodological “innovative” contribute we would like to concretise in a so called “GREAT ZONATION”, approaching PLACE of origin of wine to wine and zonation, in order to drink and TASTE the territory.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Giovanni Cargnello (collaboration de Rosario di Gaetano e Lorenzo Lovat)

Directeur SOC Tecniche Colturali – Istituto Sperimentale per la Viticoltura – Via Enrico De Nicola, 11 – 31015 Conegliano (Treviso) Italy

Contact the author

Keywords

Zoning for drinking territory, land, great zonation, great chain, viticulture

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Terroir factors causing sensory and chemical variation in Riesling wines

The term “terroir”, originated in France, comprises the interaction of soil, climate, and topography with the vines of a specific variety and may be extended to the human impact due to the active choice of viticultural and oenological treatments.

Quantification of red wine phenolics using ultraviolet-visible, near and mid-infrared spectroscopy combined with chemometrics

The use of multivariate statistics to correlate chemical data to spectral information seems as a valid alternative for the quantification of red wine phenolics. The advantages of these techniques include simplicity and cost effectiveness together with the limited time of analysis required. Although many
publications on this subject are nowadays available in the literature most of them only reported feasibility
studies. In this study 400 samples from thirteen fermentations including five different cultivars plus 150
wine samples from a varying number of vintages were submitted to spectrophotometric and chromatographic phenolic analysis.

IN DEPTH CHARACTERIZATION OF OENOLOGICAL CHARACTERISTICS OF TWO LACHANCEA THERMOTOLERANS STARTER STRAINS

Non-Saccharomyces starter cultures became increasingly popular over the years because of their potential to produce more distinctive and unique wines. The major benefit of the use of Lachancea thermotolerans as a fermentation starter is its ability to produce relevant amounts of lactic acid and reduce alcoholic strength, making it valuable for mitigating negative impacts of climate change on grapes and wine quality. Besides, like any other non-Saccharomyces yeast, L. thermotolerans can significantly affect a whole range of other physico-chemical wine parameters.

MAPPING OF GAS-PHASE CO₂ IN THE HEADSPACE OF CHAMPAGNE GLASSES BY USING AN INFRARED LASER SENSOR UNDER STATIC TASTING CONDITIONS

From the chemical angle, Champagne wines are complex hydro-alcoholic mixtures supersaturated with dissolved carbon dioxide (CO₂). During the pouring process and throughout the several minutes of tasting, the headspace of a champagne glass is progressively invaded by many chemical species, including gas-phase CO₂ in large majority. CO₂ bubbles nucleated in the glass and collapsing at the champagne surface act indeed as a continuous paternoster lift for aromas throughout champagne or sparkling wine tasting [1]. Nevertheless, inhaling a gas space with a concentration of gaseous CO₂ close to 30% and higher triggers a very unpleasant tingling sensation, the so-called “carbonic bite”, which might completely perturb the perception of the wine’s bouquet.

Use of UHPH to improve the implantation of non-Saccharomyces yeasts

Ultra High-Pressure Homogenization (UHPH) is a high-pressure pumping at 300 MPa (>200 MPa) with a subsequent depressurization against a highly resistant valve made of tungsten carbide covered by ceramic materials or carbon nanoparticles. The intense impact and shear efforts produce the nano-fragmentation of colloidal biopolymers including the elimination of microorganism (pasteurization or sterilization depending on in-valve temperature) and the inactivation of enzymes.