Terroir 2004 banner
IVES 9 IVES Conference Series 9 Zoning for drinking, tasting the territory place (“Great Zonation”): first considerations and methodology

Zoning for drinking, tasting the territory place (“Great Zonation”): first considerations and methodology

Abstract

Following the idea of « Grande Filiera » (GF) (Great chain), of « Grande Zonazione » (GZ) (Great Zonation), of “interpretation, estimation and valorisation of vineyards and wines landscape, of “qualities”(we have classified more than ninety), of quality economy.
Following the rich existing bibliography on organoleptic analyses and estimation of one wine, one product, as already publicised, we think it is somewhat limitative and unsatisfying to assign one price, to evaluate one product only and only in function of quality or for example of organoleptic evaluation and/or eno-chemical.
In the present paper we want to give an innovative contribute (maybe too innovative), philosophical, methodological, in order to evaluate one product, for example wine, also (I could say particularly) for what it represents outside of the bottle content.
Consequently for us, and probably not only for us, for example a bottle content should be evaluated, drank for getting high of a territory, for delighting, for “TASTING” and enjoying, drinking the territory, “PLACE” of origin, which as already publicised by us (Cargnello G. 1997), comprises all its resources: pedological, climatic, vitivinicultural, cultural, and coltural, monumental, hystorical, environmental, human, commercial…etc…: and for more information and completing the “filiera” consult: Cargnello G., 2003.
Naturally going beyond wrapping, stamping and else.
If its true, as its true, what above explained, zoning should be done, in order to taste and enjoy the territory while drinking wine, and TASTE A PLACE of provenience in its globality and in “filiera” taking account at least of the product (organoleptic quality), of consumer (preference and price), of producer (profit), of respect and protection of the environment in the whole sense and thus in particular way to “Taste a place” of product provenience; as concretises by information methodology CIMEC presented with success at international level.
This is philosophical and methodological “innovative” contribute we would like to concretise in a so called “GREAT ZONATION”, approaching PLACE of origin of wine to wine and zonation, in order to drink and TASTE the territory.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Giovanni Cargnello (collaboration de Rosario di Gaetano e Lorenzo Lovat)

Directeur SOC Tecniche Colturali – Istituto Sperimentale per la Viticoltura – Via Enrico De Nicola, 11 – 31015 Conegliano (Treviso) Italy

Contact the author

Keywords

Zoning for drinking territory, land, great zonation, great chain, viticulture

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

The importance of free trade agreements and non tariffs measures in a context of resurgent retaliatory trade measures against wine

Most of the issues surrounding trade in wine and spirits focus on the fight against non-tariff measures.

Effect of intra‐vineyard ripeness variation on the efficiency of commercial enzymes on berry cell wall deconstruction under winemaking conditions

Intra-vineyard variation grape berry ripening occurs within bunches, between bunches on the same vine and between vines. Although it is assumed that such variation also occurs at the grape berry cell wall level, no study to data has investigated in any depth. Here we have used a intra-vineyard panel design to investigate pooled bunches from six vines (per panel) in the context of a winemaking scenario. The dissected vineyard was harvested by separate panels, where each panel was then subjected to a standard winemaking procedure with or without the addition of three different enzyme preparations for maceration.

The effectiveness of proximal remote sensors in plant water status evaluation of grapevine

Extensive studies have been conducted on grapevine responses to water deficit, but these responses are difficult to generalise since numerous factors can influence the response(s), including genotype, developmental stage, soil, climate, and season.

Développement de l’appareil végétatif et maturation du raisin sur quatre sols de Pomerol en 1995

The Pomerol vineyard, located 35 km east of Bordeaux, covers around 800 ha on the left bank of the Isle. There is a system of fluvial terraces with more or less coarse gravel and pebble spreading, resting on a Tertiary substratum ranging from the Middle to Upper Eocene to the Lower Oligocene (Dubreuilh, 1993). This interweaving of terraces of varying thickness results in a brutal superposition of differentiated materials which give rise to various types of soil. Several site studies in this sector of the Libounais show significant morphological and analytical differences from one point to another (Guilloux et al ., 1978; Duteau, 1982; Van Leeuwen et al.., 1989). The distribution of the soils of the Pomerol vineyard was studied and resulted in a cartography at 1/25000th (Merouge, 1995).

Drought affects vineyard soil microbiome: approach to select micro-organisms adapted to drought

Climate transition with frequent heat waves and long drought periods threatens grapevine productivity and wine quality in the Mediterranean regions. Microorganisms are known to contribute to plant fitness and to stimulate plant resilience against biotic and abiotic factors.
In this work, it was assessed the impact of long-term drought on soil microbiome associated to grapevine in open field in Alentejo, renowned Portuguese wine region.
Soil and plant tissues of drought tolerant Syrah cultivar exposed to three irrigation levels (100%- FI, 50%-DI ETc; rain-fed–NI) for 5 years were sampled for two years (2022-2023). Metabarcoding analysis of soil bacteria (16S V4 rRNA) and fungi (ITS sub-region) were integrated with soil physiochemical properties and leaves´ physiological data. Pre-dawn leaf water potential and stomatal conductance confirmed the imposed drought scenarios. Even though, α- and β-diversity of prokaryotic and eukaryotic microbial communities differed more by season than water availability, samples clustered according to soil water content and pH (p<0.05). Fungal communities show higher differences in the structure across treatments than bacteria. In 2023, 16 bacterial against 61 fungal ASVs were significatively different in abundance between NI and FI. Beijerinckiaceae, Bradyrhizobiaceae (Alphaproteobacteria) and Nocardioidaceae, Streptomycetaceae (Actinobacteria) families resulted to be significatively more abundant in NI, while Ascomycota, Basidyomicota and Mortierellomycota are the most important fungal phyla in NI. With culturomics data, this study aims to gather insights into how soil microbiome is remodelled under drought and contribute to select bacterial and fungal taxa with potential to mitigate drought stress in vineyards.