Terroir 2004 banner
IVES 9 IVES Conference Series 9 Zoning for drinking, tasting the territory place (“Great Zonation”): first considerations and methodology

Zoning for drinking, tasting the territory place (“Great Zonation”): first considerations and methodology

Abstract

Following the idea of « Grande Filiera » (GF) (Great chain), of « Grande Zonazione » (GZ) (Great Zonation), of “interpretation, estimation and valorisation of vineyards and wines landscape, of “qualities”(we have classified more than ninety), of quality economy.
Following the rich existing bibliography on organoleptic analyses and estimation of one wine, one product, as already publicised, we think it is somewhat limitative and unsatisfying to assign one price, to evaluate one product only and only in function of quality or for example of organoleptic evaluation and/or eno-chemical.
In the present paper we want to give an innovative contribute (maybe too innovative), philosophical, methodological, in order to evaluate one product, for example wine, also (I could say particularly) for what it represents outside of the bottle content.
Consequently for us, and probably not only for us, for example a bottle content should be evaluated, drank for getting high of a territory, for delighting, for “TASTING” and enjoying, drinking the territory, “PLACE” of origin, which as already publicised by us (Cargnello G. 1997), comprises all its resources: pedological, climatic, vitivinicultural, cultural, and coltural, monumental, hystorical, environmental, human, commercial…etc…: and for more information and completing the “filiera” consult: Cargnello G., 2003.
Naturally going beyond wrapping, stamping and else.
If its true, as its true, what above explained, zoning should be done, in order to taste and enjoy the territory while drinking wine, and TASTE A PLACE of provenience in its globality and in “filiera” taking account at least of the product (organoleptic quality), of consumer (preference and price), of producer (profit), of respect and protection of the environment in the whole sense and thus in particular way to “Taste a place” of product provenience; as concretises by information methodology CIMEC presented with success at international level.
This is philosophical and methodological “innovative” contribute we would like to concretise in a so called “GREAT ZONATION”, approaching PLACE of origin of wine to wine and zonation, in order to drink and TASTE the territory.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Giovanni Cargnello (collaboration de Rosario di Gaetano e Lorenzo Lovat)

Directeur SOC Tecniche Colturali – Istituto Sperimentale per la Viticoltura – Via Enrico De Nicola, 11 – 31015 Conegliano (Treviso) Italy

Contact the author

Keywords

Zoning for drinking territory, land, great zonation, great chain, viticulture

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

WHEY protein hydrolysates enhance grapevine resilience to abiotic and biotic stresses

Context and purpose of the study. The growing need for sustainable solutions in viticulture has led to increased interest in biostimulants that can enhance plant resilience to both abiotic and biotic stresses.

Is complex nutrition more advantageous than mineral nitrogen for the fermentative capacities of S. cerevisiae?

During alcoholic fermentation, nitrogen is an essential nutrient for yeast as it plays a key role in sugar transport and biosynthesis of wine aromatic compounds (thiols, esters, higher alcohols). The main issue of a lack in yeast assimilable nitrogen (yan) in winemaking is sluggish or stuck fermentations promoting the growth of alteration species which may lead to economic losses. However, correcting this nitrogen deficiency is sometimes not enough to restore proper fermentation performance. This suggests the existence of other nutritional shortages.

20-Year-Old data set: scion x rootstock x climate, relationships. Effects on phenology and sugar dynamics

Global warming is one of the biggest environmental, social, and economic threats. In the Douro Valley, change to the climate are expected in the coming years, namely an increase in average temperature and a decrease in annual precipitation. Since vine cultivation is extremely vulnerable and influenced by the climate, these changes are likely to have negative effects on the production and quality of wine.
Adaptation is a major challenge facing the viticulture sector where the choice of plant material plays an important role, particularly the rootstock as it is a driver for adaptation with a wide range of effects, the most important being phylloxera, nematode and salt, tolerance to drought and a complex set of interactions in the grafted plant.
In an experimental vineyard, established in the Douro Region in 1997, with four randomized blocs, with five varieties, Touriga Nacional, Tinta Barroca, Touriga Franca and Tinta Roriz, grafted in four rootstocks, Rupestris du Lot, R110, 196-17C, R99 and 1103P, data was collected consecutively over 20 years (2001-2020). Phenological observations were made two to three times a week, following established criteria, to determine the average dates of budbreak, flowering and veraison. During maturation, weekly berry samples were taken to study the dynamics of sugar accumulation, amongst other parameters. Climate data was collected from a weather station located near the vineyard parcel, with data classified through several climatic indices.
The results achieved show a very low coefficient of variations in the average date of the phenophases and an important contribution from the rootstock in the dynamic of the phenology, allowing a delay in the cycle of up to10-12 days for the different combinations. The Principal Component Analysis performed, evaluating trends in the physical-chemical parameters, highlighted the effect of the climate and rootstock on fruit quality by grape varieties.

Results of late-wurmian to present-day climatic-geological evolution on to spatial variability of pedologic-geological characters of the AOC Gaillac terroirs (Tarn, Midi-Pyrénées)

The AOC Gaillac area is divided into three main terroirs : « The left bank terraces », « The right bank coteaux » and
« The plateau Cordais ». This division is valid at a regional scale, but it suffers of a number of local-scale exceptions. This spatial variability of the pedologic-geologic characteristics at the plot scale has been derived mainly from the main late-Würmian solifluxion phase occurring at the transition between the peri-glacial climate and the Holocene temperate conditions (13,000-10,000 yrs BP).

Photoselective shade films affect grapevine berry secondary metabolism and wine composition

Grapevine physiology and production are challenged by forecasted increases in temperature and water deficits. Within this scenario, photoselective overhead shade films are promising tools in warm viticulture areas to overcome climate change related factors. The aim of this study was to evaluate the vulnerability of ‘Cabernet Sauvignon’ grape berry to solar radiation overexposure and optimize shade film use for berry integrity. A randomized complete block design field study was conducted across two years (2020-2021) in Oakville, Napa Valley, CA, with four shade films (D1, D3, D4, D5) differing in the percent of radiation spectra transmitted and compared to an uncovered control (C0). Integrals for gas exchange parameters and mid-day stem water potential were unaffected by the shade films in 2020 and 2021. By harvest, berries from uncovered and shaded vines did not differ in their size or primary metabolism in either year. Despite precipitation exclusion during the dormant season in the shaded treatments, yield did not differ between them and the control in either season. In 2020, total skin anthocyanins (mg/g fresh mass) in the shaded treatments was greater than C0 during berry ripening and at harvest. Conversely, flavonol concentrations in 2020 were reduced in shaded vines compared to C0. The 2020 growing season highlighted the impact of heat degradation on flavonoids. Flavonoid concentrations in 2021 increased until harvest while flavonoid degradation was apparent from veraison to harvest in 2020 across shaded and control vines. Wine analyses highlighted the importance of light spectra to modify wine composition. Wine color intensity, tonality and anthocyanin values were enhanced in D4 whereas antioxidant properties were enhanced in C0 and D5 wines. Altogether, our results highlighted the need of new approaches in warm viticulture areas given the impact that composition of light has on berry and wine quality.